The Recurrence/Transience of Random Walks on a Bounded Grid in an Increasing Dimension

Shuma Kumamoto (Kyushu Univ.),
*Shuji Kijima (Shiga Univ.),
Tomoyuki Shirai (Kyushu Univ.)

1. Introduction
$>\mathbb{Z}^{3}$
$>$ RWoGG
> Tree
2. Related work
> Exploration
3. Previous work
$>$ LHaGG
$>\{0,1\}^{n}$ proof
$>$ Extension to $\{0,1, \ldots, N\}^{n}$
4. Main result
> Weakly LHaGG
> Recurrence
> Transience
$>$ pausing coupling
5. Concluding remarks
6. Introduction (≥ 9 min.)
$>\mathbb{Z}^{3}$
$>$ RWoGG
> Tree
7. Related work ($\geq 6 \mathrm{~min}$.)
> Exploration
8. Previous work ($\geq 8 \mathrm{~min}$.)
$>$ LHaGG
$>\{0,1\}^{n}$ proof
$>$ Extension to $\{0,1, \ldots, N\}^{n}$
9. Main result ($\geq 25 \mathrm{~min}$.)
$>$ Weakly LHaGG
> Recurrence
> Transience
$>$ pausing coupling
10. Concluding remarks (1 min.)

Plan of talk ≥ 49 min. 25 min .

1. Introduction (≥ 9 min. 6 min.)
$>\mathbb{Z}^{3}$
$>$ RWoGG
\rightarrow Tree
2. Related work (≥ 6 min. 3 min .)
\rightarrow Exploration
3. Previous work ($\geq-8 \mathrm{~min}$.)
$>$ LHaGG
$>\{0,1\}^{n}$ proof
> Extension to $\{0,1, \ldots, N\}^{n}$
4. Main result (≥ 25 min. 7 min.)
$>$ Weakly LHaGG
\rightarrow Recurrence
\rightarrow Transience
> pausing coupling
5. Concluding remarks (1 min.)

Find this slide in my HP
https://shuji-kijima.com/
Shuji Kijima

1. Introduction w/ examples

Recurrence/Transience of Random walks on infinite graphs

A random walk on an infinite graph is recurrent at vertex v
if it visits v infinitely many times, i.e.,

$$
\sum_{t=0}^{\infty} \operatorname{Pr}\left[X_{t}=v\right]=\infty
$$

holds, otherwise it is said to be transient.

For instance,

Recurrence/Transience of Random walks on infinite graphs

A random walk on an infinite graph is recurrent at vertex v
if it visits v infinitely many times, i.e.,

$$
\sum_{t=0}^{\infty} \operatorname{Pr}\left[X_{t}=v\right]=\infty
$$

holds, otherwise it is said to be transient.

For instance,

RW on \mathbb{Z} is recurrent at 0 ,
RW on \mathbb{Z}^{2} is recurrent at o ,

Recurrence/Transience of Random walks on infinite graphs

A random walk on an infinite graph is recurrent at vertex v
if it visits v infinitely many times, i.e.,

$$
\sum_{t=0}^{\infty} \operatorname{Pr}\left[X_{t}=v\right]=\infty
$$

holds, otherwise it is said to be transient.

For instance,

RW on \mathbb{Z}^{2} is recurrent at o ,

RW on \mathbb{Z}^{3} is transient at o,

Example 1. Random walk in a growing region of \mathbb{Z}^{3}
\checkmark Random walk on \mathbb{Z}^{3} is transient at o.
\checkmark Random walk on $\{-n, \ldots, n\}^{3}$ is recurrent at o.
Q. Is a random walk on $\{-n, \ldots, n\}^{3}$ recurrent or transient if n increases as time go on?
A. It depends on the increasing speed.

Find the phase transition point regarding the growing speed.

Model: Random Walk on a Growing Graph (RWoGG)
\square Growing graph is a sequence of static graphs
[K, Shimizu, Shiraga '21]

$$
\boldsymbol{G}=\mathcal{G}_{0}, \mathcal{G}_{1}, \mathcal{G}_{2}, \ldots
$$

where each $\mathcal{G}_{t}=\left(\mathcal{V}_{t}, \mathcal{E}_{t}\right)$ is a static simple graph.
We assume $\mathcal{V}_{t} \subseteq \mathcal{V}_{t+1}$, for convenience.
Furthermore, $\varepsilon_{t} \subseteq \varepsilon_{t+1}$ holds in this talk.
\square Growing graph is a sequence of static graphs
[K, Shimizu, Shiraga '21]

$$
\boldsymbol{G}=\mathcal{G}_{0}, \mathcal{G}_{1}, \mathcal{G}_{2}, \ldots
$$

where each $\mathcal{G}_{t}=\left(\mathcal{V}_{t}, \mathcal{E}_{t}\right)$ is a static simple graph.
We assume $\mathcal{V}_{t} \subseteq \mathcal{V}_{t+1}$, for convenience.
Furthermore, $\varepsilon_{t} \subseteq \varepsilon_{t+1}$ holds in this talk.
\square RWoGG (D, G, P) is a specific model:
$>\mathfrak{D}(1), \mathfrak{D}(2), \mathfrak{D}(3), \ldots \in \mathbb{Z}$ denote the duration time.
$>$ Growing graph is given by

$$
\mathcal{G}_{t}=G(n) \text { for } t \in\left[T_{n-1}, T_{n-1}+\mathfrak{d}(n)\right)
$$

where $T_{n}=\sum_{i=1}^{n} \mathrm{D}(n)$, i.e.,

$$
\mathcal{G}_{t}=\left\{\begin{array}{cc}
G(1) & \text { for the first } \mathfrak{D}(1) \text { steps } \\
G(2) & \text { for the next } \grave{\delta}(2) \text { steps } \\
G(3) & \text { for the next } \mathfrak{d}(3) \text { steps } \\
\vdots & \vdots
\end{array}\right.
$$

$>P(n)$ denotes the transition matrix on $G(n)$.

Example 1. Random walk in a growing region of \mathbb{Z}^{d}
Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=n^{2}$,
- $G(n)$ is a grid graph $\{-n, \ldots, n\}^{3}$,
- $P(n)$ denotes the simple random walk $w /$ reflection bound, i.e., move to a neighbor w.p. $\frac{1}{3} \cdot \frac{1}{2}=\frac{1}{6}$ unless boundary, for $n=1,2, \ldots$

d(2) steps

d(3) steps

Thm. [Dembo et al. 2014, Kumamoto et al. 2024]
If $\sum_{n=1}^{\infty} \frac{\mathfrak{d}(n)}{n^{d}}=\infty$ then recurrent, otherwise transient.

Example 1. Random walk in a growing region of \mathbb{Z}^{d}

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=n^{2}$,
- $G(n)$ is a grid graph $\{-n, \ldots, n\}^{3}$,

Recurrent

since $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}}=\sum_{n=1}^{\infty} \frac{1}{n}=\infty$.

- $P(n)$ denotes the simple random walk w/ reflection bound,
i.e., move to a neighbor w.p. $\frac{1}{3} \cdot \frac{1}{2}=\frac{1}{6}$ unless boundary, for $n=1,2, \ldots$

d(2) steps

d(3) steps

Thm. [Dembo et al. 2014, Kumamoto et al. 2024]
If $\sum_{n=1}^{\infty} \frac{\mathfrak{d}(n)}{n^{d}}=\infty$ then recurrent, otherwise transient.

Example 1. Random walk in a growing region of \mathbb{Z}^{d}
Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=n^{1.999}$,
- $G(n)$ is a grid graph $\{-n, \ldots, n\}^{3}$,
- $P(n)$ denotes the simple random walk $w /$ reflection bound, i.e., move to a neighbor w.p. $\frac{1}{3} \cdot \frac{1}{2}=\frac{1}{6}$ unless boundary, for $n=1,2, \ldots$

d(2) steps

d(3) steps

Thm. [Dembo et al. 2014, Kumamoto et al. 2024]
If $\sum_{n=1}^{\infty} \frac{\mathfrak{d}(n)}{n^{d}}=\infty$ then recurrent, otherwise transient.

Example 1. Random walk in a growing region of \mathbb{Z}^{d}

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=n^{1.999}$,
- $G(n)$ is a grid graph $\{-n, \ldots, n\}^{3}$,

Transient

$$
\text { since } \sum_{n=1}^{\infty} \frac{n^{1.999}}{n^{3}}=\sum_{n=1}^{\infty} \frac{1}{n^{0.999}}<1000
$$

- $P(n)$ denotes the simple random walk w/ reflection bound,
i.e., move to a neighbor w.p. $\frac{1}{3} \cdot \frac{1}{2}=\frac{1}{6}$ unless boundary, for $n=1,2, \ldots$

d(2) steps

১(3) steps

Thm. [Dembo et al. 2014, Kumamoto et al. 2024]
If $\sum_{n=1}^{\infty} \frac{\mathfrak{D}(n)}{n^{d}}=\infty$ then recurrent, otherwise transient.

Example 2. RW on an infinite k-ary tree

\checkmark Random walk on an infinite k-ary tree is transient at r.

Example 2. RW on an infinite k-ary tree

\checkmark Random walk on an infinite k-ary tree is transient at r.
\checkmark Random walk on a finite k-ary tree is recurrent at r.

Example 2. RW on an infinite k-ary tree

\checkmark Random walk on an infinite k-ary tree is transient at r.
\checkmark Random walk on a finite k-ary tree is recurrent at r.
Q. Is a random walk on a k-ary tree recurrent or transient if its height n increases as time go on?
A. It depends on the increasing speed.

Find the phase transition point regarding the growing speed.

Example 2. Random walk on a growing k-ary tree

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $b(n)=3^{n}$,
- $G(n)$ is a 3-ary tree of height n,
- $P(n)$ denotes the simple random walk w/ reflection bound,
i.e., move to a neighbor w.p. $1 / 4$ unless the root or a leaf, for $n=1,2, \ldots$

D(1) steps
d(2) steps

১(3) steps

Thm. [Huang 2019, Kumamoto et al. 2024]
If $\sum_{n=1}^{\infty} \frac{\mathfrak{d}(n)}{k^{n}}=\infty$ then recurrent, otherwise transient.

Example 2. Random walk on a growing k-ary tree

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=3^{n}$,
- $G(n)$ is a 3-ary tree of height n,

Recurrent

since $\sum_{n=1}^{\infty} \frac{3^{n}}{3^{n}}=\sum_{n=1}^{\infty} 1=\infty$.

- $P(n)$ denotes the simple random walk w/ reflection bound,
i.e., move to a neighbor w.p. $1 / 4$ unless the root or a leaf, for $n=1,2, \ldots$

d(1) steps
Thm. [Huang 2019, Kumamoto et al. 2024]
If $\sum_{n=1}^{\infty} \frac{\mathfrak{d}(n)}{k^{n}}=\infty$ then recurrent, otherwise transient.

Example 2. Random walk on a growing k-ary tree

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=2.999999^{n}$,
- $G(n)$ is a 3 -ary tree of height n,
- $P(n)$ denotes the simple random walk w/ reflection bound,
i.e., move to a neighbor w.p. 1/4 unless the root or a leaf, for $n=1,2, \ldots$

d(1) steps
d(2) steps

d(3) steps

Thm. [Huang 2019, Kumamoto et al. 2024]
If $\sum_{n=1}^{\infty} \frac{\mathfrak{d}(n)}{k^{n}}=\infty$ then recurrent, otherwise transient.

Example 2. Random walk on a growing k-ary tree

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=2.999999^{n}$,
- $G(n)$ is a 3-ary tree of height n,

Transient

since $\sum_{n=1}^{\infty} \frac{2.999999^{n}}{3^{n}}<1,000,000$.

- $P(n)$ denotes the simple random walk w/ reflection bound,
i.e., move to a neighbor w.p. $1 / 4$ unless the root or a leaf, for $n=1,2, \ldots$

d(1) steps
d(2) steps

১(3) steps

Thm. [Huang 2019, Kumamoto et al. 2024]
If $\sum_{n=1}^{\infty} \frac{\mathfrak{d}(n)}{k^{n}}=\infty$ then recurrent, otherwise transient.

2. Related work

About analysis of algorithms in dynamic environment

Related work (1/2): Random walks on dynamic graphs

- Graph search by RW --- related to cover time
- Copper and Frieze (2003): Crawling on simple models of web graphs.
- Avin, Koucky and Lotker (2008): a bad example for hitting-time (cover time as well) w/ $\Omega\left(2^{n}\right)$ for the number of vertices n.
- Denysyuk and Rodrigues (2014): cover time under some fairness condition.
- Lamprou, Martin and Spirakis (2018): edge-uniform stochastically graphs.
- Sauerwald and Zanetti (2019): $O\left(n^{2}\right)$ cover time for d-regular graphs.
- K, Shimizu, Shiraga (2021): cover ratio of RWoGG
- Mixing time
- Saloff-Coste and Zuniga (2009,2011): mixing time for time-inhomogeneous Markov chains w/ an invariant stationary distribution.
- Dembo, Huang and Zheng (2019) analyzed the conductance of growing subregion of \mathbb{Z}^{d}.
- Cai, Sauerwald and Zanetti (2020): mixing time for edge-Markovian graph.
\square Recurrence/transience
... Continued

Related work (1/2): Random walks on dynamic graphs

\square Graph search by RW --- related to cover time

- Copper and Frieze (2003): Crawling on simple models of web graphs.
- Avin, Koucky and Lotker (2008): a bad example for hitting-time (cover time as well) w/ $\Omega\left(2^{n}\right)$ for the number of vertices n.
- Denysyuk and Rodrigues (2014): cover time under some fairness condition.
- Lamprou, Martin and Spirakis (2018): edge-uniform stochastically graphs.
- Sauerwald and Zanetti (2019): $O\left(n^{2}\right)$ cover time for d-regular graphs.
- K, Shimizu, Shiraga (2021): cover ratio of RWoGG
- Mixing time
- Saloff-Coste and Zuniga $(2009,2011)$: mixing time for time-inhomogeneous Markov chains w/ an invariant stationary distribution.
- Dembo, Huang and Zheng (2019) analyzed the conductance of growing subregion of \mathbb{Z}^{d}.
- Cai, Sauerwald and Zanetti (2020): mixing time for edge-Markovian graph.
- Recurrence/transience
... Continued

Collecting an increasing number of coupons [K, Shimizu, Shiraga '21]

Collecting an increasing number of coupons [K, Shimizu, Shiraga '21]

Collecting an increasing number of coupons [K, Shimizu, Shiraga '21]

Collecting an increasing number of coupon: $\mathfrak{d}(n)$: \#days of the $n^{\text {th }}$ period

Prop.

If $\mathrm{D}(n)=n$ then $\mathrm{E}\left[U_{n}\right]<\frac{1}{\mathrm{e}-1}$.
U_{n} : \#items uncollected
in the end of $n^{\text {th }}$ period
[K, Shimizu, Shiraga '21]

Proof.
$\checkmark \mathcal{E}_{i, n}:=\left\{\begin{array}{cc}1 & \text { (item } i \text { is uncollected in the end of the } n^{\text {th }} \text { period) } \\ 0 & \text { (item } i \text { is collected by the end of the } n^{\text {th }} \text { period) }\end{array}\right.$
for $i=1,2, \ldots, n$.
$\checkmark U_{n}=\sum_{i=1}^{n} \varepsilon_{i, n}$
\checkmark Prob. that item n is uncollected in the end of the nth period:

$$
\operatorname{Pr}\left[\varepsilon_{n, n}=1\right]=\left(1-\frac{1}{n}\right)^{n}<\mathrm{e}^{-1}
$$

\checkmark Prob. that item $i(i \leq n)$ is uncollected in the end of the $n^{\text {th }}$ period:

$$
\operatorname{Pr}\left[\varepsilon_{i, n}=1\right]=\left(1-\frac{1}{i}\right)^{i}\left(1-\frac{1}{i+1}\right)^{i+1} \ldots\left(1-\frac{1}{n}\right)^{n}<\left(\frac{1}{\mathrm{e}}\right)^{n+1-i}
$$

$\checkmark \mathrm{E}\left[U_{n}\right]=\sum_{i=1}^{n} \operatorname{Pr}\left[\varepsilon_{i, n}\right]<\sum_{i=1}^{n}\left(\frac{1}{\mathrm{e}}\right)^{n+1-i}=\frac{1}{\mathrm{e}}+\frac{1}{\mathrm{e}^{2}}+\cdots+\frac{1}{\mathrm{e}^{n}}<\frac{\frac{1}{\mathrm{e}}}{1-\frac{1}{\mathrm{e}}}=\frac{1}{\mathrm{e}-1}<0.582$.

RWoGG (D, G P)
Coupon collector is often regarded as a RW on the complete graph, and we can extend the arguments to RWoGG for general graphs.

Thm. (general upper bound)
If $\mathfrak{D}(i) \geq c t_{\text {hit }}(i)(c \geq 1)$ then $E[U]=O(1)$.
Particularly, if $\frac{\mathrm{f}(i)}{t_{\text {hit }}(i)} \xrightarrow{i \rightarrow \infty} \infty$ then $\mathrm{E}\left[U_{n}\right] \xrightarrow{n \rightarrow \infty} 0$.

Thm. (upper bound for lazy and reversible walk)
Suppose $P^{(i)}$ is lazy and reversible.
If $\frac{t_{\text {hit }}(i)}{t_{\text {mix }}(i)} \geq \frac{i \gamma}{c}$ and $\mathfrak{D}(i) \geq \frac{3 c t_{\text {hit }}(i)}{i^{\gamma}}(c>0)$ then $\mathrm{E}\left[U_{n}\right] \leq \frac{8 n^{\gamma}}{c}+32$.
S. Kijima, N. Shimizu, T. Shiraga, How many vertices does a random walk miss in a network with moderately increasing the number of vertices?, in Proc. SODA 2021, 106-122.

Related work (2/2): recurrence/transience of RW

- Much work about the recurrence/transience on growing graphs exist in the context of self-interacting random walks including reinforced random walks, excited random walks, etc. since 1990s, or before.
- Dembo, Huang and Sidoravicius (2014×2): recurrent $\Leftrightarrow \sum_{t=0}^{\infty} \pi_{t}(0)=\infty$ for growing subregion of \mathbb{Z}^{d} (fixed d), by conductance argument.
> See also Huang and Kumagai (2016), Dembo, Huang, Morris and Peres (2017), Dembo, Huang and Zheng (2019), etc. about heat kernel, evolving set arguments.
- Amir, Benjamini, Gurel-Gurevich and Kozma (2015): random walk on growing tree. (random walk in changing environment).
- Huang (2017): growing graph w/ uniformly bounded degrees.
- Kumamoto, K. and Shirai (2024): k-ary tree, $\{0,1\}^{n} w /$ an increasing n under RWoGG model by coupling.
- This work (2024): $\{0,1, \ldots, N\}^{n}$ (fixed N, increasing n) by pausing coupling.

3. Our previous work [SAND '24]

About the recurrence/transience of RWoGG, for an introduction of the basic technique and its issue.
S. Kumamoto, S. Kijima and T. Shirai, An analysis of the recurrence/transience of random walks on growing trees and hypercubes, Proc. SAND 2024, 17:1-17:17

Example 3. Random walk on $\{0,1\}^{n} \mathrm{w} /$ an increasing n

Let $\mathcal{D}=(\mathbb{D}, G, P)$ be a RWoGG where

- $\partial(n)=2^{n}$,
- $G(n)$ is a $\{0,1\}^{n}$ skeletone,
- $P(n)$ denotes the simple random walk,
i.e., move to a neighbor w.p. $1 / n$, for $n=1,2, \ldots$

Example 3. Random walk on $\{0,1\}^{n} \mathrm{w} /$ an increasing n

Let $\mathcal{D}=(\mathfrak{D}, G, P)$ be a RWoGG where

- $\mathfrak{d}(n)=2^{n}$,
- $G(n)$ is a $\{0,1\}^{n}$ skeletone,

- $P(n)$ denotes the simple random walk,
i.e., move to a neighbor w.p. $1 / n$, for $n=1,2, \ldots$

Thm. [Kumamoto et al. 2024]
If $\sum_{n=1}^{\infty} \frac{\mathfrak{d}(n)}{2^{n}}=\infty$ then recurrent, otherwise transient.

Example 3. Random walk on $\{0,1\}^{n} \mathrm{w} /$ an increasing n

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $b(n)=2^{n}$,
- $G(n)$ is a $\{0,1\}^{n}$ skeletone,
- $P(n)$ denotes the simple random walk,
i.e., move to a neighbor w.p. $1 / n$, for $n=1,2, \ldots$

Lem. [Kumamoto et al. 2024]
Random walk on $\{0,1\}^{n}$ is LHaGG.

Thm. [Kumamoto et al. 2024]
If $\sum_{n=1}^{\infty} \frac{\mathfrak{d}(n)}{2^{n}}=\infty$ then recurrent, otherwise transient.

Defs.

- $\mathcal{D}_{1}=\left(f_{1}, G_{1}, P_{1}\right)$ is less homesick than $\mathcal{D}_{2}=\left(f_{2}, G_{2}, P_{2}\right)$
if $R_{1}(t) \leq R_{2}(t)$ for any t where $R_{1}(t)$ and $R_{2}(t)$ respectively denote the return probabilities of \mathcal{D}_{1} and \mathcal{D}_{2} at time t.
- $\mathcal{D}=(f, G, P)$ is less homesick as graph growing (LHaGG)
if \mathcal{D} is less homesick than $\mathcal{D}^{\prime}=(g, G, P)$ for any g satisfying that
$\sum_{k=1}^{n} f(k) \leq \sum_{k=1}^{n} g(k)$ for any n,
i.e., \mathcal{D} and \mathcal{D}^{\prime} grows similarly, but \mathcal{D} grows faster.

The faster a graph grows,
the smaller the return probability.

Theorems by LHaGG
The faster a graph grows,
the smaller the return probability.

Under the condition of LHaGG, we can prove the following sufficient conditions of recurrence/transience, respectively.

Thm. KKumamoto, K., Shirai '24]
Suppose $\mathcal{D}=(\mathfrak{D}, G, P)$ is LHaGG. If

$$
\sum_{n=1}^{\infty} \delta(n) p(n)=\infty
$$

then \mathcal{D} is recurrent at v, where $p(n)=\pi_{n}(v)$.
Thm. [Kumamoto, K., Shirai '24]
Suppose $\mathcal{D}=(\mathrm{D}, G, P)$ is LHaGG. If

$$
\sum_{n=1}^{\infty} \max \{\mathrm{D}(n), \mathfrak{t}(n)\} p(n)<\infty
$$

then \mathcal{D} is transient at v, where $\mathrm{t}(n)$ represents the mixing time.

Example 3. Random walk on $\{0,1\}^{n} \mathrm{w} /$ an increasing n

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=2^{n}$,
- $G(n)$ is a $\{0,1\}^{n}$ skeletone,
- $P(n)$ denotes the simple random walk,
i.e., move to a neighbor w.p. $1 / n$, for $n=1,2, \ldots$

The faster a graph grows, the smaller the return probability?

Lem. [Kumamoto et al. 2024]
Random walk on $\{0,1\}^{n}$ is LHaGG.

Thm. [Kumamoto et al. 2024]
If $\sum_{n=1}^{\infty} \frac{\mathfrak{D}(n)}{2^{n}}=\infty$ then recurrent, otherwise transient.

Isn't it trivial?

FAQ: Any example for not LHaGG?

A (lazy) simple random walk on

The faster a graph grows, the smaller the return probability.

$G(1) \quad G(2) \quad G(3) \quad G(4) \quad G(5)$
is not LHaGG.

Proof.

The proof is a monotone coupling.

- Let $X_{t} \sim \mathcal{D}_{f}=(f, G, P)$ and $Y_{t} \sim \mathcal{D}_{g}=(g, G, P)$ where $\sum_{i=1}^{n} f(i) \geq \sum_{i=1}^{n} g(i)$,
$>$ i.e., the graph of \mathcal{D}_{g} grows faster than that of \mathcal{D}_{f}.
- Let $\left|X_{t}\right|,\left|Y_{t}\right|$ denote the number of 1 s in $X_{t} \in\{0,1\}^{n_{t}}, Y_{t} \in\{0,1\}^{m_{t}}$
where notice that $n_{t} \leq m_{t}$. Then,
$\operatorname{Pr}\left[\left|X_{t+1}\right|-1=\left|X_{t}\right|\right]=\frac{1}{2} \frac{\left|X_{t}\right|}{n_{t}}, \operatorname{Pr}\left[\left|X_{t+1}\right|=\left|X_{t}\right|\right]=\frac{1}{2}, \operatorname{Pr}\left[\left|X_{t+1}\right|+1=\left|X_{t}\right|\right]=\frac{1}{2}\left(1-\frac{\left|X_{t}\right|}{n_{t}}\right)$
$\operatorname{Pr}\left[\left|Y_{t+1}\right|-1=\left|Y_{t}\right|\right]=\frac{1}{2} \frac{\left|Y_{t}\right|}{m_{t}}, \quad \operatorname{Pr}\left[\left|Y_{t+1}\right|=\left|Y_{t}\right|\right]=\frac{1}{2}, \quad \operatorname{Pr}\left[\left|Y_{t+1}\right|+1=\left|Y_{t}\right|\right]=\frac{1}{2}\left(1-\frac{\left|Y_{t}\right|}{m_{t}}\right)$
- if $\left|X_{t}\right|<\left|Y_{t}\right|$ then we can couple so that $\left|X_{t+1}\right| \leq\left|Y_{t+1}\right|$
$>$ thanks to the self-loop w.p. $\frac{1}{2}$.
- If $\left|X_{t}\right|=\left|Y_{t}\right|$ then we can couple so that $\left|X_{t+1}\right| \leq\left|Y_{t+1}\right|$ since $n_{t} \leq m_{t}$.

Thus, $X_{t}=o$ if $Y_{t}=o$,
meaning that $\operatorname{Pr}\left[X_{t}=o\right] \geq \operatorname{Pr}\left[Y_{t}=o\right]$.

It looks a very simple exercise if you are familiar with coupling, but $n_{t} \neq m_{t}$ makes some trouble, in general.

Example 3. Random walk on $\{0,1\}^{n} \mathrm{w} /$ an increasing n

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $b(n)=2^{n}$,
- $G(n)$ is a $\{0,1\}^{n}$ skeletone,
- $P(n)$ denotes the simple random walk,
i.e., move to a neighbor w.p. $1 / n$, for $n=1,2, \ldots$

Example 3. Random walk on $\{0,1\}^{n} \mathrm{w} /$ an increasing n

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=2^{n}$,
- $G(n)$ is a $\{0,1\}^{n}$ skeletone,

Recurrent

- $P(n)$ denotes the simple random walk, i.e., move to a neighbor w.p. $1 / n$, for $n=1,2, \ldots$

Lem. [Kumamoto et al. 2024]
Random walk on $\{0,1\}^{n}$ is LHaGG.

Thm. [Kumamoto et al. 2024]
If $\sum_{n=1}^{\infty} \frac{\mathfrak{d}(n)}{2^{n}}=\infty$ then recurrent, otherwise transient.

Three representations (or "applications"?) of $\{0,1\}^{n}$
\square Random walk on $\{0,1\}^{n} \mathrm{w} /$ an increasing dimensions

\square Random pick/drop items w/ an increasing number of items

\square Random bit flip of binary w/an increasing bit length

Three representations (or "applications"?) of $\{0,1\}^{n}$
\square Random walk on $\{0,1\}^{n} \mathrm{w} /$ an increasing dimensions

\square Random pick/drop items w/ an increasing number of items

\square Random bit flip of binary w/an increasing bit length

Extension from $\{0,1\}^{n}$ to $\{0,1, \ldots, 9\}^{n}$

\square Random walk on $\{0,1, \ldots, 9\}^{n} \mathrm{w} /$ an increasing n

$$
\underset{\mathfrak{D}(1) \text { steps } \text { D(2) steps }}{\substack{4 \\ \longleftrightarrow}} \underset{\mathfrak{D}(3) \text { steps }}{\longrightarrow}
$$

\square Random buy/sell stocks w/ an increasing \#brands

\square Random up/down digits w/ an increasing digit length

Target. Random walk on $\{0,1, \ldots, N\}^{n} \mathrm{w} /$ an increasing n

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=N^{n}$,
- $G(n)$ is a $\{0,1, \ldots, N\}^{n}$ skeletone,
- $P(n)$ denotes the lazy simple random walk $w /$ reflection bound,
i.e., move to a neighbor w.p. $1 / 4 n$, unless boundary
for $n=1,2, \ldots$

$$
\{0,1, \ldots, N\}^{1} \quad\{0,1, \ldots, N\}^{2} \quad\{0,1, \ldots, N\}^{3}
$$

Q.

Is random walk on $\{0,1, \ldots, N\}^{n}$ LHaGG?
4. Main Result

Target. Random walk on $\{0,1, \ldots, N\}^{n} \mathrm{w} /$ an increasing n

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=N^{n}$,
- $G(n)$ is a $\{0,1, \ldots, N\}^{n}$ skeletone,
- $P(n)$ denotes the lazy simple random walk $w /$ reflection bound,
i.e., move to a neighbor w.p. $1 / 4 n$, unless boundary
for $n=1,2, \ldots$

$$
\{0,1, \ldots, N\}^{1} \quad\{0,1, \ldots, N\}^{2} \quad\{0,1, \ldots, N\}^{3}
$$

Q.

Is random walk on $\{0,1, \ldots, N\}^{n}$ LHaGG?

Target. Random walk on $\{0,1, \ldots, N\}^{n} \mathrm{w} /$ an increasing n

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=N^{n}$,
- $G(n)$ is a $\{0,1, \ldots, N\}^{n}$ skeletone,
- $P(n)$ denotes the lazy simple random walk $\mathrm{w} /$ reflection bound,
i.e., move to a neighbor w.p. $1 / 4 n$, unless boundary for $n=1,2, \ldots$

Q.

Is random walk on $\{0,1, \ldots, N\}^{n}$ LHaGG?

Target. Random walk on $\{0,1, \ldots, N\}^{n} \mathrm{w} /$ an increasing n

Let $\mathcal{D}=(D, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=N^{n}$,
- $G(n)$ is a $\{0,1, \ldots, N\}^{n}$ skeletone,
- $P(n)$ denotes the lazy simple random walk $w /$ reflection bound,
i.e., move to a neighbor w.p. $1 / 4 n$, unless boundary for $n=1,2, \ldots$

Lem. 7.
Random walk on $\{0,1, \ldots, N\}^{n}$ is weakly LHaGG.

Thm. 6. If $\mathcal{D}=(\mathrm{D}, G, P)$ satisfies

$$
\sum_{n=1}^{\infty} \frac{\partial(n)}{(2 N)^{n}}=\infty
$$

then o is recurrent, otherwise o is transient.

Defs.

- $\mathcal{D}_{1}=\left(f_{1}, G_{1}, P_{1}\right)$ is less homesick than $\mathcal{D}_{2}=\left(f_{2}, G_{2}, P_{2}\right)$
if $R_{1}(t) \leq R_{2}(t)$ for any t where $R_{1}(t)$ and $R_{2}(t)$ respectively denote the return probabilities of \mathcal{D}_{1} and \mathcal{D}_{2} at time t.
- $\mathcal{D}=(f, G, P)$ is less homesick as graph growing (LHaGG)
if \mathcal{D} is less homesick than $\mathcal{D}^{\prime}=(g, G, P)$ for any g satisfying that $\sum_{k=1}^{n} f(k) \leq \sum_{k=1}^{n} g(k)$ for any n,
i.e., \mathcal{D} and \mathcal{D}^{\prime} grows similarly, but \mathcal{D} grows faster.

The faster a graph grows,

 the smaller the return probability.Defs.

- $\mathcal{D}_{1}=\left(f_{1}, C_{1}, P_{1}\right)$ is less homesick than $\mathcal{D}_{2}=\left(f_{2}, G_{2}, P_{2}\right)$
- $R_{1}(t) \leq R_{2}(t)$ for any t where $R_{1}(t)$ and $R_{2}(t)$ respectively denote the returnprobabilities of \mathcal{D}_{1} and \mathcal{D}_{2} at time t.
- $\mathcal{D}=(f, G, P)$ is less homesick as graph growing (LHaGG)
if \mathcal{D} is less homesick than $\mathcal{D}^{\prime}=(g, G, P)$ for any g satisfying that
$\sum_{k=1}^{n} f(k) \leq \sum_{k=1}^{n} g(k)$ for any n,
i.e., \mathcal{D} and \mathcal{D}^{\prime} grows similarly, but \mathcal{D} grows faster.

The faster a graph grows, the smaller the return probability.
wLHaGG
We replace the condition about the return prob. with a condition of the sum of return prob.

Defs.

- $\mathcal{D}_{1}=\left(f_{1}, G_{1}, P_{1}\right)$ is weakly less homesick than $\mathcal{D}_{2}=\left(f_{2}, G_{2}, P_{2}\right)$
i $\sum_{t=1}^{T} R_{1}(t) \leq \sum_{t=1}^{T} R_{2}(t)$ for any T where $R_{1}(t)$ and $R_{2}(t)$ respectively denote the return probabilities of \mathcal{D}_{1} and \mathcal{D}_{2} at time t.
- $\mathcal{D}=(f, G, P)$ is weakly less homesick as graph growing (wLHaGG) if \mathcal{D} is weakly less homesick than $\mathcal{D}^{\prime}=(g, G, P)$ for any g satisfying that $\sum_{k=1}^{n} f(k) \leq \sum_{k=1}^{n} g(k)$ for any n, i.e., \mathcal{D} and \mathcal{D}^{\prime} grows similarly, but \mathcal{D} grows faster.

The faster a graph grows, the smaller the expected number of returns.
= sum of return prob.

General theorems
Condition 0 . (ergodic). In $\mathcal{D}=(\mathrm{D}, G, P)$, every transition matrix $P(n)$ is ergodic.
Condition 1. (mixing time). $\mathcal{D}=(\mathbb{D}, G, P)$ satisfies

$$
\sum_{k=1}^{\infty} \tau^{*}(k) p(k)<\infty
$$

where $p(k)=\pi_{k}(o)$ and $\tau^{*}(k)=t_{\text {mix }}^{k}\left(\frac{p(k)}{4}\right)$.

Mixing time is not very big.

$$
\text { E.g., } O\left(\frac{1}{\pi_{k}(o)} \frac{1}{k \log k}\right)
$$

Thm. 2. (Recurrence).
Suppose (D, G, P) satisfies Conditions 0 and 1 .
If $\sum_{k=1}^{\infty} \mathfrak{D}(k) p(k)=\infty$ then the initial vertex v is recurrent.
Thm. 4. (Transience).
Suppose ($(, G, P$) satisfies Conditions 0 and 1 , and it is wLHaGG.
If $\sum_{k=2}^{\infty} \mathfrak{d}(k) p(k-1)<\infty$ then the initial vertex v is transient.

Recurrence

Suppose (D, G, P) satisfies Conditions 0 and 1.
If $\sum_{k=1}^{\infty} \mathrm{D}(k) p(k)=\infty$ then the initial vertex v is recurrent.
Proof. Let X_{t} follow ($(\mathrm{D}, G, P$), and let $R(t)=\operatorname{Pr}\left[X_{t}=o\right]$. We claim

Lem. 3. $\sum_{t=1}^{T_{n}} R(t) \geq \frac{1}{2} \sum_{k=1}^{n}\left(\mathrm{D}(k)-\tau^{*}(k)\right) p(k)$
Proof of Lem. 3.

- Notice that X_{t} follows P_{n} for $t \in\left[T_{n-1}, T_{n-1}+\mathfrak{D}(n)\right)$.
- If $\mathrm{D}(n)>t_{\text {mix }}(\epsilon)$ then $R(t) \geq \pi_{n}(\mathrm{o})-\epsilon$ for $t \geq T_{n-1}+t_{\text {mix }}(\epsilon)$
where π_{n} is the stationary distribution of P_{n}.
- Thus, $R(t) \geq \pi_{n}(\mathrm{o})-\frac{1}{2} p(n)=\frac{1}{2} p(n)$

$$
\text { since } \tau^{*}(k)=t_{\text {mix }}\left(\frac{1}{2} p(n)\right) \text { and } p(n)=\pi_{n}(o)
$$

- $\sum_{t=1}^{T_{n}} R(t)=\sum_{k=1}^{n} \sum_{s=1}^{\mathfrak{D}(k)} R\left(T_{n-1}+s\right) \geq \sum_{k=1}^{n} \sum_{s=\tau^{*}(n)}^{\mathfrak{D}(k)} R\left(T_{n-1}+s\right) \geq$

$$
\sum_{k=1}^{n} \sum_{s=\tau^{*}(n)}^{\mathfrak{\supset}(k)} \frac{1}{2} p(n)=\frac{1}{2} \sum_{k=1}^{n}\left(\mathrm{D}(k)-\tau^{*}(k)\right) p(k)
$$

Once we obtain Lem. 3, Thm. 2 is easy: $\sum_{t=1}^{\infty} R(t)=\infty$ holds if $\sum_{k=1}^{\infty} \mathrm{D}(k) p(k)=\infty$ and $\sum_{k=1}^{\infty} \tau^{*}(k) p(k)<\infty$.

Transience

 Suppose ($(\mathfrak{D}, G, P$) satisfies Conditions 0 and 1 , and it is wLHaGG. If $\sum_{k=2}^{\infty} \mathfrak{D}(k) p(k-1)<\infty$ then the initial vertex v is transient.Proof. Let $f(k)=\max \left\{0, \tau^{*}(k)\right\}$.
By wLHaGG, $\sum_{t=1}^{T_{n}} R_{\mathfrak{D}}(t) \leq \sum_{t=1}^{T_{n}} R_{g}(t)$.
Lem. 5. $\sum_{t=1}^{T_{n}} R_{g}(t) \leq g(1)+\frac{3}{2} \sum_{k=2}^{n} g(k) p(k-1)$
Proof of Lem. 5.
Let $f(k)=\left\{\begin{array}{cc}g(k) & k \leq n-1 \\ \infty & k=n .\end{array}\right.$ Then, $\sum_{k=1}^{m} g(k) \leq \sum_{k=1}^{m} g(k)$ for any m.
Let $X_{t} \sim \mathcal{D}_{g}=(g, G, P)$ and $Y_{t} \sim \mathcal{D}_{f}=(f, G, P)$.

- Notice that Y_{t} follows P_{n-1} for $t \geq T_{n-2}$.
- By wLHaGG, $\sum_{t=1}^{T} \operatorname{Pr}\left[X_{t}=o\right] \leq \sum_{t=1}^{T} \operatorname{Pr}\left[Y_{t}=o\right]$ for any T.

Particularly, remark $X_{t} \sim P_{n}$ but $Y_{t} \sim P_{n-1}$ for $t \in\left[T_{n-1}, T_{n}\right)$

- $R_{f}(t) \leq \pi_{n}(o)+\frac{1}{2} p(n-1)=\frac{3}{2} p(n-1)$ for $t \geq T_{n-1}$
- $\sum_{t=1}^{T_{n}} R_{g}(t)=\sum_{k=1}^{n} \sum_{s=1}^{g(k)} R_{g}\left(T_{k-1}+s\right) \leq g(1)+\sum_{k=2}^{n} \sum_{s=1}^{g(k)} R_{f}\left(T_{k-1}+s\right) \leq$ $g(1)+\sum_{k=2}^{n} \sum_{s=1}^{g(k)} \frac{3}{2} p(k-1)=g(1)+\frac{3}{2} \sum_{k=2}^{n} g(k) p(k-1)$

Once we obtain Lem. 5, Thm. 4 is clear.

Target. Random walk on $\{0,1, \ldots, N\}^{n} \mathrm{w} /$ an increasing n

Let $\mathcal{D}=(\mathcal{D}, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=N^{n}$,
- $G(n)$ is a $\{0,1, \ldots, N\}^{n}$ skeletone,
- $P(n)$ denotes the lazy simple random walk $\mathrm{w} /$ reflection bound,
i.e., move to a neighbor w.p. $1 / 4 n$, unless boundary
for $n=1,2, \ldots$

Lem. 7.
Random walk on $\{0,1, \ldots, N\}^{n}$ is weakly LHaGG.

Thm. 6. If $\mathcal{D}=(\mathcal{D}, G, P)$ satisfies

$$
\sum_{n=1}^{\infty} \frac{\grave{D}(n)}{(2 N)^{n}}=\infty
$$

Target. Random walk on $\{0,1, \ldots, N\}^{n} \mathrm{w} /$ an increasing n

Let $\mathcal{D}=(\mathcal{D}, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=N^{n}$,
- $G(n)$ is a $\{0,1, \ldots, N\}^{n}$ skeletone,
- $P(n)$ denotes the lazy simple random walk $w /$ reflection bound,
i.e., move to a neighbor w.p. $1 / 4 n$, unless boundary
for $n=1,2, \ldots$

It looks a very simple exercise if you are familiar with coupling, but $n_{t} \neq m_{t}$ makes some trouble, in general.

Target. Random walk on $\{0,1, \ldots, N\}^{n} \mathrm{w} /$ an increasing n

Let $\mathcal{D}=(\mathcal{D}, G, P)$ be a RWoGG where

- $\mathfrak{D}(n)=N^{n}$,
- $G(n)$ is a $\{0,1, \ldots, N\}^{n}$ skeletone,
- $P(n)$ denotes the lazy simple random walk $w /$ reflection bound,
i.e., move to a neighbor w.p. $1 / 4 n$, unless boundary for $n=1,2, \ldots$

We develop "pausing coupling"

It looks a very simple exercise if you are familiar with coupling, but $n_{t} \neq m_{t}$ makes some trouble, in general.

Figure of pausing coupling

- Let $\boldsymbol{X}=X_{0}, X_{1}, X_{2}, \ldots \sim \mathcal{D}_{f}$ and $\boldsymbol{Y}=Y_{0}, Y_{1}, Y_{2}, \ldots \sim \mathcal{D}_{g}$ where let \mathcal{D}_{g} grow faster than \mathcal{D}_{f}.
- We couple \boldsymbol{X} and \boldsymbol{Y}, instead of X_{t} and Y_{t}.

We define time correspondence $t \mapsto S(t)$ depending on \boldsymbol{Y} so that

1. if $\boldsymbol{Y}_{\boldsymbol{t}}$ does self-loop then so does $\boldsymbol{X}_{\boldsymbol{S}^{-1}(t)}$,
2. if Y_{t} updates Y_{t}^{i} for $i \leq \operatorname{dim}\left(X_{s^{-1}(t)}\right)$ then X updates $X_{S^{-1}(t)}^{i}$,
3. if Y_{t} updates Y_{t}^{i} for $i>\operatorname{dim}\left(X_{s^{-1}(t)}\right)$ then \boldsymbol{X} pauses.

We need to check "measure conservation" of the coupling.

Figure of pausing coupling

- Let $\boldsymbol{X}=X_{0}, X_{1}, X_{2}, \ldots \sim \mathcal{D}_{f}$ and $\boldsymbol{Y}=Y_{0}, Y_{1}, Y_{2}, \ldots \sim \mathcal{D}_{g}$
where let \mathcal{D}_{g} grow faster than \mathcal{D}_{f}.
- We couple \boldsymbol{X} and \boldsymbol{Y}, instead of X_{t} and Y_{t}.

We define time correspondence $t \mapsto S(t)$ depending on \boldsymbol{Y} so that

1. if Y_{t} does self-loop then so does $X_{S^{-1}(t)}$,
2. if Y_{t} updates Y_{t}^{i} for $i \leq \operatorname{dim}\left(X_{s^{-1}(t)}\right)$ then X updates $X_{S^{-1}(t)}^{i}$,
3. if Y_{t} updates Y_{t}^{i} for $i>\operatorname{dim}\left(X_{s^{-1}(t)}\right)$ then \boldsymbol{X} pauses.

We need to check "measure conservation" of the coupling.

Figure of pausing coupling

- Let $\boldsymbol{X}=X_{0}, X_{1}, X_{2}, \ldots \sim \mathcal{D}_{f}$ and $\boldsymbol{Y}=Y_{0}, Y_{1}, Y_{2}, \ldots \sim \mathcal{D}_{g}$ where let \mathcal{D}_{g} grow faster than \mathcal{D}_{f}.
- We couple \boldsymbol{X} and \boldsymbol{Y}, instead of X_{t} and Y_{t}.

We define time correspondence $t \mapsto S(t)$ depending on \boldsymbol{Y} so that

1. if Y_{t} does self-loop then so does $X_{S^{-1}(t)}$,
2. if Y_{t} updates Y_{t}^{i} for $i \leq \operatorname{dim}\left(X_{S^{-1}(t)}\right)$ then \boldsymbol{X} updates $X_{S^{-1}(t)}^{i}$,
3. if Y_{t} updates Y_{t}^{i} for $i>\operatorname{dim}\left(X_{s^{-1}(t)}\right)$ then X pauses.

We need to check "measure conservation" of the coupling.

Let $\eta: \boldsymbol{Y} \mapsto \boldsymbol{X}=\eta(\boldsymbol{Y})$ denote the coupling described in the previous slide.
We prove two things:

- The coupling η preserves the measure, i.e.,

$$
\operatorname{Pr}[\boldsymbol{Y}=\boldsymbol{y}]=\operatorname{Pr}[\boldsymbol{X}=\eta(\boldsymbol{y})]
$$

\square The coupling η preserves $\left|X_{t}\right| \leq\left|Y_{S}\right|$ (meaning " $\left|\eta\left(y_{S}\right)\right| \leq\left|y_{S}\right|$ ") for any s satisfying $S(t) \leq s<S(t+1)$.
$>$ This implies $\#\left\{t \leq T \mid X_{t}=o\right\} \geq \#\left\{t \leq T \mid Y_{t}=o\right\}$ for any T.

Def. $S(t)$

Proof.
Suppose $\boldsymbol{Y}=Y_{0}, Y_{1}, Y_{2}, Y_{3}, \ldots$ is represented by

$$
\boldsymbol{\theta}_{Y}=\left(\lambda_{1}, j_{1}, \rho_{1}\right),\left(\lambda_{2}, j_{2}, \rho_{2}\right),\left(\lambda_{3}, j_{3}, \rho_{3}\right), \ldots
$$

We define $S: \mathbb{Z} \rightarrow \mathbb{Z}$ according to $\boldsymbol{\theta}$.
Let $S(1)=\min \left\{\min \left\{t>0 \mid \lambda_{t}=0\right\}, \min \left\{t>0 \mid j_{t} \in n_{0}\right\}\right\}$.
Recursively, let

$$
S(k)=\min \left\{\min \left\{t>S(k-1) \mid \lambda_{t}=0\right\}, \min \left\{t>S(k-1) \mid j_{t} \in n_{k-1}\right\}\right\}
$$

where let $\min \{\emptyset\}=\infty$.
If $S(k)=\infty$ then let $S(k+1)=\infty$.
For convenience, let $S^{-1}(t)=k$ for $t=S(k)<\infty \quad(k=1,2, \ldots)$.
Then, we define $\boldsymbol{X}=X_{0}, X_{1}, X_{2}, \ldots$ by

$$
\begin{aligned}
\boldsymbol{\theta}_{\boldsymbol{X}} & =\left(\left(\lambda_{S^{-1}(k)}, j_{S^{-1}(k)}, \rho_{S^{-1}(k)}\right)\right)_{k=1,2, \ldots} \\
& =\left(\lambda_{S^{-1}(1)}, j_{S^{-1}(1)}, \rho_{S^{-1}(1)}\right),\left(\lambda_{S^{-1}(2)}, j_{S^{-1}(2)}, \rho_{S^{-1}(2)}\right), \ldots
\end{aligned}
$$

as far as $S(k)<\infty$.
If $S(k)=\infty$ then generate $\left(\lambda_{k}^{\prime}, j_{k}^{\prime}, \rho_{k}^{\prime}\right)$ and transit to X_{k+1} according to it.

Def. $S(t)$
Proof.
Suppose $\boldsymbol{Y}=Y_{0}, Y_{1}, Y_{2}, Y_{3}, \ldots$ is represented by

$$
\boldsymbol{\theta}_{\boldsymbol{Y}}=\left(\lambda_{1}, j_{1}, \rho_{1}\right),\left(\lambda_{2}, j_{2}, \rho_{2}\right),\left(\lambda_{3}, j_{3}, \rho_{3}\right), \ldots
$$

We define $S: \mathbb{Z} \rightarrow \mathbb{Z}$ according to $\boldsymbol{\theta}$.
Let $S(1)=\min \left\{\min \left\{t>0 \mid \lambda_{t}=0\right\}, \min \left\{t>0 \mid j_{t} \in n_{0}\right\}\right\}$.
Recursively, let

$$
S(k)=\min \left\{\min \left\{t>S(k-1) \mid \lambda_{t}=0\right\}, \min \left\{t>S(k-1) \mid j_{t} \in n_{k-1}\right\}\right\}
$$

where let $\min \{\emptyset\}=\infty$.
If $S(k)=\infty$ then let $S(k+1)=\infty$.
For convenience, let $S^{-1}(t)=k$ for $t=S(k)<\infty \quad(k=1,2, \ldots)$.
Then, we define $\boldsymbol{X}=X_{\text {Time up... }}$
as far as $S(k)$
If $S(k)=\infty$ then generate $\left(\lambda_{k}^{\prime}, j_{k}^{\prime}, \rho_{k}\right)$ and transit to X_{k+1} according to it.

5. Concluding remarks

Final slide

Result

■ Recurrence/transience of wLHaGG RWoGG.

- Random walk on $\{0,1, \ldots, N\}^{n} \mathrm{w} /$ increasing n is wLHaGG.
$>$ Proof by pausing coupling.

Future work
\square Simplify the proof
$>$ Extension to other RWoGGs

- E.g., GW tree, PA graph, and more general graphs,
- Edge dynamics, e.g., growing + edge Markovian.
\square Analysis of RWoGG beyond recurrence/transience
$>$ Hitting time, meeting time, gathering time, etc.
$>$ Find a new limit, undefined for an infinite graph.

The end

Thank you for the attention.

Lazy simple random walk on $\{0,1, \ldots, N\}^{n} \mathrm{w} /$ increasing n
Current state $X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{n_{t}}\right) \in\{0,1, \ldots, N\}^{n_{t}}$.

1. W.p. $\frac{1}{2}$, set $X_{t+1}=X_{t}$.
2. Else, choose $i \in\left\{1, \ldots, n_{t}\right\}$ u.a.r.
3. If X_{t}^{i} is not 0 nor N then update as $X_{t+1}^{i}=X_{t}^{i} \pm 1$ w.p. $\frac{1}{2}$ resp.
4. Else if $X_{t}^{i}=0$ then update as $X_{t+1}^{i}=X_{t}^{i}+1$.
5. Else if $X_{t}^{i}=N$ then update as $X_{t+1}^{i}=X_{t}^{i}-1$.

Lazy simple random walk on $\{0,1, \ldots, N\}^{n} \mathrm{w} /$ increasing n
Current state $X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{n_{t}}\right) \in\{0,1, \ldots, N\}^{n_{t}}$.

1. W.p. $\frac{1}{2}$, set $X_{t+1}=X_{t}$.
2. Else, choose $i \in\left\{1, \ldots, n_{t}\right\}$ u.a.r.

$$
\text { If } \lambda=0 \text { self-loop }
$$

Choose i u.a.r.
3. If X_{t}^{i} is not 0 nor N then update as $X_{t+1}^{i}=X_{t}^{i} \pm 1$ w.p. $\frac{1}{2}$ resp.
4. Else if $X_{t}^{i}=0$ then update as $X_{t+1}^{i}=X_{t}^{i}+1$.

If $\rho=0$ then -1

A transition $X_{t} \mapsto X_{t+1}$ is represented by uniform r.v.s $(\lambda, i, \rho) \in\{0,1\} \times\left\{1, \ldots, n_{t}\right\} \times\{0,1\}$.

