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Combinatorial Problems and Exercise [Lovasz 1979]

§1. Basic Enumeration

1. In a shop there are k kinds of postcards. We want to send
postcards to n friends.

(i) How many different ways can this be done?
>
(i) What happens if we want to send them different cards?

>

(ii1) What happens if we want to send two different cards to
each of them (but different persons may get the same card)?

>
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Combinatorial Problems and Exercise [Lovasz 1979]

§1. Basic Enumeration

1. In a shop there are k kinds of postcards. We want to send
postcards to n friends.

(i) How many different ways can this be done?
> k™
(i) What happens if we want to send them different cards?

|

k! L
> I (which is 0 if n > k)

(ii1) What happens if we want to send two different cards to
each of them (but different persons may get the same card)?

> (5)"



Combinatorial Problems and Exercise [Lovasz 1979]

§1. Basic Enumeration

2. We have k distinct post cards and want to send them all
to our n friends (a friend can get any number of post cards,

including 0).
(i) How many ways can this be done?
>
(i1) What happens if we want to send at least one card to
each friend?
>
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Combinatorial Problems and Exercise [Lovasz 1979]

§1. Basic Enumeration

2. We have k distinct post cards and want to send them all

to our n friends (a friend can get any number of post cards,
including 0).

(i) How many ways can this be done?
> nk

(i1) What happens if we want to send at least one card to
each friend?

>n!-{7’fl}

fi} counts the number of ways to

partition a set of k elements into n nonempty subsets.
Ky _ (k—1 k—1
{n}_{n—l}-l_n{ n }

holds. [Wikipedia “Stirling number”]

Stirling number of the second kind {




Another interesting counting problem in [Lovasz 1979]

§1. Basic Enumeration

32. How many shortest paths from s to t in the n X n grid?
>

5% 5 grid
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Another interesting counting problem in [Lovasz 1979]

§1. Basic Enumeration
32. How many shortest paths from s to t in the n X n grid?
2
> ()
33. How many shortest paths from s to t in the n X n grid
upper than diagonal?

>
()

®
5% 5 grid
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Another interesting counting problem in [Lovasz 1979]

§1. Basic Enumeration
32. How many shortest paths from s to t in the n X n grid?
2
> ()
33. How many shortest paths from s to t in the n X n grid
upper than diagonal?

> (M- (7 —n'(n '1)' (Catalan number)
(s)

®
5% 5 grid



Counting is a foundation of Combinatorics

#permutations of n elements is n!

n!

#k combinations of n elements is (’;) =

(n—k)'k!
#Dyck path = #binary trees = #proper parentheses = ...
. _(2n . 2n _ 2n!
is known as Catalan number = (2) — (2",) = mySwT

# spanning trees = Matrix tree theorem

Many known formula for counting combinatorial objects

(while some of them do not have an “explicit form”
...such as Stirling number)

... And, many more combinatorial objects

for which efficient way to count is not known.

13
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Combinatorics, Probability and Computing are closely related

Combinatorics

probability computing
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Combinatorics, Probability and Computing are closely related

@bi nato@

History: mainly from the view point of computing

1979, Valiant, Introduce the class #P

1982, Aldous, coupling method for mixing time

1986, Jerrum, Valiant, Vazirani, relation b/w count & sample
1989, Jerrum, Sinclair, conductance for mixing. (expander)
1989, Toda, PH < P#

1991, Dyer, Frieze, Kannan, FPRAS for convex body (MCMC)
1996, Propp, Wilson, perfect sampling (cftp)

1997, Bubley, Dyer, path coupling for mixing time

2004, Jerrum, Sinclair, Vigoda, FPRAS for permanent (MCMC)

(_probability Qmputing)
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Scope of this talk

This talk is concerned with approximate counting/integral

... mainly from the computational view (rather than structure)

Is randomness really necessary for computing? J




Talk sketch

0. Introduction

» Counting is a foundation of Combinatorics
1. Randomized approximation for counting
2. Deterministic approximation of volume |

3. Deterministic approximation of volume II

Is randomness really necessary for computing?

17



Talk sketch

1. Randomized approximation for counting
» Approximate # simple paths on grid, by MCMC
i. Problem description
ii. ldea for approximate counting
iii. How to sample from Z,?
iv. Then, we counted
2. Deterministic approximation of volume |

3. Deterministic approximation of volume Il
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a.k.a. self-avoiding Walk>
| 1. Counting simple paths on grid by MCMC

Yuki Shibata, Yukiko Yamauchi,

Shuji Kijima, Masafumi Yamashita

Kyushu Univ.
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Counting self-avoiding walk (R1RAZ = ARREE in JP)

Q. How many simple paths on n X n gri

from the NW corner (s) to the SE corner (t).
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How to count combinations
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Facts, and our target

v We don’t know any efficient way to calculate the
number, say poly(n) time, even for approximation.

v The number for n = 26 is roughly 1.74 x 10163, where
the exact value is presented by [Iwashita et al. 2013],
which is the state of the art for exact counting.

v Counting simple paths in general planer graph is #P-
hard [Provan 1986]

O We in this talk will approximately count it by MCMC.

*H. Iwashita, Y. Nakazawa, J. Kuwahara, T. Uno, S. Minato, Efficient
computation of the number of paths in a grid graph with minimal perfect hash
functions, Hokkaido University TCS Technical Report, TCS-TR-A-13-64, 2013.
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Talk sketch

1. Randomized approximation of counting

» Approximate # simple paths on grid, by MCMC

ii. ldea for approximate counting
iii. How to sample from &, ?
iv. Then, we counted
2. Deterministic approximation of volume |

3. Deterministic approximation of volume Il
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Two basic idea

Notations

[ What we want is |Q| (= |E;])- ]

O O = {s-t simple paths}

O =, = {s-t simple paths with length at most k}

(k=2n2n+22n+4,..,L")
where L* denotes the length of the longest path:

ol—

(n+ 1)% — 1 (ifnis odd)
(n+ 1)? — 2 (if nis even)

Self-reducibi lity

|HL 2| |52n+4| . |EZTL+2|

] = =
K-L* 2J) |Epe 4| |u2n+2|

)

/////>T/

AN

|dea 2.

|Zk—2l

|Zk]

inverse

is estimated by a Monte Carlo

|dea 1.
|25, | = #shortest paths

= (")
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Algorithm

Parameters:
T (number of transitions of a Markov chain)
M (number of samples for Monte Carlo)
Input: n (size of grid).
Output: Z (approximation of s-t paths)
Set 7 :=1;
For (k=2n+2; k<L k:=k+2){
Set X € £;; (X is init. config. of MC)
Set S := 0; (S is a counter)
for(i=0; i<M, i++){

3
if(X € Z_y) S++;

}
SetZ::Z*%;

}
Output Z;

for(j=0; j<t; j++){
Update X (Markov chain) [Umform sampling from Z,, ]

24



Recall 25
Approximation Ratio Z, = {s-t simple paths with length at most k}

Thm.

Foranye(0<e<1l)and§ (0< 6 < 1),

let M = 12n3(2n?%e~1)? In(n?6~1) for the number
of uniform samples from z, (k = 2n,2n + 2, ..., L"),

then the apE)roximate solution Z satisfies
Pri(1-Q<Z<(1+elQ]=1-6.
@)

—_— ~— >
How to sample uniformly from =, ?

S A~

|:> [ Markov chain Monte Carlo (MCMC) J




Talk sketch

1. Randomized approximation of counting

» Approximate # simple paths on grid, by MCMC

iii. How to sample from &;?
iv. Then, we counted
2. Deterministic approximation of volume |

3. Deterministic approximation of volume Il
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As a preliminary step, we give a representation of ...

()

/CSD

éi jectiv>

® \_ Ve

s-t simple path simply connected coloring

Prop.
|Q|(= |{s — t simple paths}|)
= |{simply connected coloring}|




Markov chain for simply connected coloring

Markov chain MC
State space: =,
Transition X —» X":
Step 1. Choose a cell c u.a.r.
Step 2. Let Y be a state X & c.
Step3. If Y € Z;, thenset X' =Y, elseset X' = X.

() ()




29
Markov chain for simply connected coloring

Markov chain MC
State space: =,
Transition X —» X":
Step 1. Choose a cell c u.a.r.
Step 2. Let Y be a state X & c.
Step3. If Y € E, thenset X' =Y, elseset X' = X.

Check!

« IsY asimply connected coloring? and
—___* Is the length (corresponding s-t path) at most k?

[ —r—71 | |
U B o e
Actual implementation is

(1 based on specific case analysis
for practical speed up.




Thm.
The MC has the unique limit distribution,
which is uniform over 2,

Sketch of proof

« MC is irreducible (transition diagram over Z;, is strongly connected)
* MC is aperiodic

« MC satisfies detailed balanced equation
VX,Y €E,, Pr(X - Y) =Pr(Y - X)

30

Foundations of the MCMC

» irreducible and aperiodic finite Markov chain has the unique stationary
distribution.

« detailed balanced equation
VX,Y € S,Pr(X » Y) = Pr(Y - X)

holds, then the stationary distribution is uniform over S.




The idea of “sampling via Markov chain”

Start from arbitrary initial state

Make several transitions
State Space

Output a sample

= outputs after many transitions asymptotically
according to its stationary distribution

31



Talk sketch

0. Introduction
1. Randomized approximation of counting
» Approximate # simple paths on grid, by MCMC
i. Problem description
ii. Idea for approximate counting
iii. How to sample from Z=,?
iv. Then, we approximately counted
2. Deterministic approximation of volume |

3. Deterministic approximation of volume Il
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Computational results by MCMC

# steps of MC per sample 7 =30

# samples M =107
8.40 * 101°0 8.55 * 10159 1h 27m
1.74 * 10193 1.78 * 10163 1h 33m
unknown 2.09 * 10217 2h 4m
unknown 6.35* 1093  5h 44m
unknown  6.07 * 102415 23h 20m
unknown  1.196 * 102667 96h

(approx. is the average of five trials)



We want to tell her ... ‘ BHEDEORT

The number of paths seems about 10024157 ~ 1.744"°
(conjecture: no proof yet)

log10 Z ( \
10000 i /3 conjecture
2
n
8000 2
— (1.732.)"
7000 \ )
6000
5000
4000 Plot of (n,log, Z)
2000 ¢ . n = 1-26 true value
2000 o
.,.o"". . N = 1~200 approx. value
1000 -
o .
et e Iy =0.2415x2
0 50 100 150 200 n

Plot of (n,log,, Z)
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Discussion for Section 1: Open Problems

#simple paths (a.k.a. self-avoiding walk)

O Is the mixing time of MC poly(n)?

O Or, exists (another) poly(n) time randomized approx. algo.?
O +/3-conjecture.

v LB 1.628, UB 1.782, [Bousquet-Melos, Guttmann Jensen, 2005]
v asymptotically 1.744550 =~ 10924168 «_ questionable

FPRAS (fully polynomial-time randomized approximation scheme)
O #simple paths (in general planer graph)

O #BIS / #down sets / log-supermodular distribution

O #forests / Tutte polynomial



log1[Q]

Q2] log10/Q| 2
2 0.301030 0.301030
12 1.079181 0.269795
184 2.264818 0.251646
8512 3.930032 0.245627
1262816 6.101340 0.244054
575780564 8.760257 0.243340
7.8936E+11 11.897275 0.242802
3.2666E+15 15.514096 0.242408
4.10442E+19 19.613252 0.242139
1.56876E+24 24.195556 0.241956
1.82413E+29 29.261056 0.241827
6.4528E+34 34.809748 0.241734
6.94507E+40 40.841676 0.241667
2.2745E+47 47.356885 0.241617
2.26675E+54 54.355403 0.241580
6.87454E+61 61.837244 0.241552
6.34481E+69 69.802419 0.241531
1.78211E+78 78.250935 0.241515
1.52334E+87 87.182798 0.241504
3.96289E+96 96.598012 0.241495
3.1375E+106 106.496580 0.241489
7.5597E+116 116.878505 0.241485
5.5435E+127 127.743787 0.241482
1.2372E+139 139.092430 0.241480
8.403E+150 150.924433 0.241479

36
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So what?

MCMC is a powerful and useful technique

for randomized approximate counting/integral.

...However, “Is randomness really necessary for computing?”

39



Talk sketch

2. Deterministic approximation of volume |

» FPTAS for the volume of 0-1 knapsack polytope
i. Problem description
ii. Convolution for the exact volume
iii. Riemann sum for approximate convolution
iv. Analysis

3. Deterministic approximation of volume Il
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2. Deterministic Approximation of

| the volume of a 0-1 knapsack polytope

Ei Ando (Sojo Univ), Shuji Kijima (Kyushu Univ.)

Ei Ando and Shuji Kijima, An FPTAS for the volume computation of 0-1 knapsack
polytopes based on approximate convolution, Algorithmica, 76:4 (2016), 1245--1263.



0-1 knapsack polytope

Input: positive integers a4, ...,a,,, b

Output: the volume of 0-1 knapsack polytope K
K={xel[01]" | ajx; + -+ a,x, < b}

v

42
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Approximating the volume is hard. Note
- ) Independent from P vs.NP

[Elekes 1986] (cf. [Lovasz 1986])
As given a convex body by a membership oracle,
no polynomial time deterministic algorithm approximates
its volume within the ratio 1.999™".
> If the convex body is a polytope, then there may be
a much better way ... [Lovasz 1986]

Dyer and Frieze [1988]

Computing the volume of a 0-1 knapsack polytope is #P-hard.
(cf. Counting the number of 0-1 knapsack solutions is #P-hard [Valiant 79])



History: Randomized Approximation (FPRAS)

Convex body Fully Polynomial-time ]
Dyer, Frieze and Kannan [1991] Randomized Approximation Scheme

0*(n?3) time (The first FPRAS)

Lovasz and Vempala [2006] @C") CrL]:i?m é"(\jonte @
0*(n*) time

Cousins and Vempala [2015]
0*(n3) time
#0-1 knapsack solutions
Morris and Sinclair [2004]
poly(n) time (MCMC)
Dyer [2003]
0*(n?®) time (dynamic programming) »
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History Deterministic approximations for #P-hard problems

#0-1knapsack solutions
Dyer [2003]
\/n approximation
Gopalan, Klivans and Meka [FOCS 2011]
FPTAS (Fully Polynomial Time Approximation Scheme)
Stefankovi¢, Vempala and Vigoda [FOCS 2011]
FPTAS based on dynamic programming
Volume of 0-1 knapsack polytope
Li and Shi [2014]

FPTAS O (—log—log b) time, based on dynamic programming
Ando and Kijima [2016]

FPTAS O( ) time, based on approximate convolution



Comparison with Li-Shi

Li and Shi [2014]
v Counting the number of grids in the knapsack polytope
(based on the DP by Stefankovic et al.)

v 0 (n—glogA—tlog b) time

€2

Ando and Kijima [2016]

v Approximate convolution (different approach)

v 0 ("?3) time

46



Talk sketch

2. Deterministic approximation of volume |

» FPTAS for the volume of 0-1 knapsack polytope

ii. Convolution for the exact volume
iii. Riemann sum for approximate convolution
iv. Analysis

3. Deterministic approximation of volume Il
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0-1 knapsack polytope

Input: positive integers a4, ...,a,,, b

Output: the volume of 0-1 knapsack polytope K
K={xel[01]" | ajx; + -+ a,x, < b}

Compute Vol(K) is #P-hard
Dyer and Frieze [1988]

[
Thm. [Ando & Kijima 16]

For any € (0 < € < 1), there exists an algorithm which

outputs Z satisfying
(1—¢)Vol(K) <Z < (1+ ¢)Vol(K)

) time.

Tl3

inO(

€

48



As a preliminary step, Normalize knapsack coefficients

For convenience, we normalize coefficients:

Let a; = %M, and let
K={xe[01]"|a'x< M}

Recall

Prop.
K

~

K

K={x€e[01]"|a'x<b}.

M € Z-, is a parameter
for approximation

]

49



Convolution for Vol(K)

Def.

Let

Oo(y) = {(1):

and recursively (w.r.t. j) let
1

0

®;(y) ‘=j CI)j—1(3’—

y <0
y=0

chS)dS

Prop.
@, (M) = Vol(K)

convolution at j-th dim.

50



Figure for the inductive convolution

Kils]={(xy, ..,xj—1, %) €K; | x; = s}

1
Vol; (K;) = fo Vol;_;(K;[s])ds

\ 4

>0 = |

;1 (y — @s)ds




Figure for the inductive convolution

K;[s] : v Xi—1,%) €Ki | xj = s}

>0 = |

0

1

;1 (y — @s)ds

={ (%1,
{(Xl, ...,Xj_l,Xj) € [0,1]] | c'ilxl + -+ Eij_lxj_l + d]XJ < vV, Xj = S}
{ (1,

= v Xj—1,5) €[0,1] | @yxy + -+ @j_yxj1 Sy — G5 }

1
Vol; (K;) = fo Vol;_;(K;[s])ds

¥4y - @js) = Vo4 (Rs])

N

~N

\ 4




Prop. >3
Proof Sketch CIDj(y) = Pr[c’ile + -+ X < )’]

Proof Sketch (recursion)

Let

0, x <0

(indicator function),
1

b, () = f Doy — d;5)ds = Prly — & X, = 0] = Prld; X, < y]
0

and we obtain the claim for j = 1.



Prop. >4
Proof Sketch ®;(y) = Pr|a; X; + -+ &X; < y]

f: uniform density on [0,1

f(S):{L 0<x<l1

Recursively assuming the claim when j — 1

0, otherwise
Pr‘[ﬁile + .-+ aj_lxj—]_ + d]X] < y]
(0.0]

—CO

- f Pr(a, X, + =+ @_1Xj_1 + d;s < y| f(s)ds

—C0

— JrooPr[lel + -t Elj_lxj_1 <y- djS] f(s)ds
- Jr ;_1(y — &s)f (s)ds
rl

— JO CI)]_l(_’y — (:i]S)dS
= j()’)



Talk sketch

2. Deterministic approximation of volume |

» FPTAS for the volume of 0-1 knapsack polytope

iii. Riemann sum for approximate convolution
iv. Analysis

3. Deterministic approximation of volume Il
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Approximation of ® by quadrature by parts with G

Definition
Let

0, x <0
GO(y) = CDO(y) — {1 x > 0

Recursively, let
1

Ej(y) = fo Gj_l(y — c“ijs)ds

and let

Gi(y) = G;([y])

Recall
Function ®; (j =0,1,...,n)

0, x <0

and recursively let
1

%) = | &0y -gs)ds




Approximation of ® by quadrature by parts with G

Gi(y)
D;(y)

57

v

|
M steps function

57



Recall

Calculation of approximate function G; G;(y) = G;([yl)

For z € Z,
1
Gi(z) = Jo Gj_l(z — de)ds

1 1 1
== j—1(Z)+ 1(2—1)"' Gi—1(z —2) + -

~

(- "1 ) —|a J
za_] 1z =D+ Y Z D6z g]) (ifz—a > 0)
=\ 171
1
z . j—1(Z—l)
(=0

(otherwise)

In principle,
Gj(z) for eachz = 0,1, ..., M is computed

from G;_,(z") (z' = 0,1, ..., M) in O(M) time
(without using [ ).




Algorithm

Algorithm

INPUT: @ = (d@,, ..., d,) € QF,.

1. Let Go(y):=0for y <0 and let G4(y) =1 for y > 0.
2. Forj=1,..,n

3. Forz=1,..,.M
4 Compute G;(z);
5. Output G,(M).

Lemma A ‘ — Lemma A’
0(nM?) time. SEPTETE 0(nM) time.
Lemma B

Forany e (0 < e <1), let M > 2n?%e~1, then
O, (M) < G,(M) < (1 + €)D,,(M).
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Talk sketch

0. Introduction

1. Randomized approximation of counting

2. Deterministic approximation of volume |

» FPTAS for the volume of 0-1 knapsack polytope
i. Problem description
ii. Convolution for the exact volume
iii. Riemann sum for approximate convolution
iv. Analysis

3. Deterministic approximation of volume Il
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Lemma B

Tec. 1 Forany e (0 < e < 1), let M = 2n%ec~1, then
@, (M) < G,(M) < (1+ €)d, (M).

61

Lemma 1 (Horizontal approximation)
P;(y) <Gy <Py +))

v

M steps function
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Lemma 1 (Horizontal approximation)
Approximation ratio D;(y) < Gi(y) < @;(y + )

62

Obs. 1
®;(y), Ej(y), G;(y) are resp. monotone nondecreasing w.r.t. y

Obs. 2 B
Giy) <G <G(y+1)

Obs. 3

®;(y) < G;(y)

1
D;(y) —Jr i1 (y — d;s)ds @t_@
1
SJ b= 54.

SJO . 1(y ajs)ds—G (y)




Obs. 2
Tec. 1: Horizontal Approximation Gi(y) <G(H) <Gly+1)
Lemma 1 Obs. 3 B
®;(y) < G;(y) < @;(y + ) _ %0) =GO

The former ineq. comes from Obs. 2,3.



Obs. 2
Tec. 1: Horizontal Approximation Gi(y) <G(H) <Gly+1)

Lemma 1 Def.
1

P;(y) < Gi(y) < D;(y +)) G.(y) = f oy — &;5)ds

0

Proof (of the second ineq.)
For j = 0,0bs. 2 and G,(y) = ®,(y) implies the claim.

Recursively
-, induct. hypo.

SJ ]1(y—ajs+]—1)ds

= ‘I’j(y +( - D)
From Obs. 2,

— Yy =y+1
G;(y) <Gy +1) <P(y+)) . >




. . Lemma B 65
Analysis of approx. ratio Forany e (0 < e < 1), let M > 2n2e™1, then

b, (M) <G,(M) (1 +e)P,(M).

Lemma 1 (Horizontal approximation)
O;(y) <Gi(y) <Dy +))

| @, (M) < G,(M) < (1 +€)Dp(M) |




. . Lemma B 66
Analysis of approx. ratio Forany e (0 < e < 1), let M > 2n2e™1, then

b, (M) <G,(M) (1 +e)P,(M).

Lemma 1 (Horizontal approximation)
P;(y) <Gy <Pi(y +))

Lemma 2 (cone bound) |
P (M) (M N
b, (M+n)  \M+n

n >
- (1-5)
2n
€
l-n—=1-

| @,(M) < G,(M) < D, (M +n) < (1+€)P,(M) |




Tec. 2. Cone bound (for vertical approx. ratio)

Lemma 2

®,, (M)

o, (M+n)

(

M
M+n

)Tl
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0-1 knapsack polytope

Input: positive integers a4, ...,a,,, b

Output: the volume of 0-1 knapsack polytope K
K={xel[01]" | ajx; + -+ a,x, < b}

Compute Vol(K) is #P-hard
Dyer and Frieze [1988]

Thm. [Ando & Kijima 16]
For any € (0 < € < 1), there exists an algorithm which

outputs Z satisfying
(1—¢€)Vol(K) <Z < (1+ ¢)Vol(K)
3

in 0 (n?) time.
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Discussion for Section 2
Extension

69

The algorithm is extend to ones with m constraints

(so called “m-D knapsack™).

INPUT: m vectors ai,...,a,;, € Z%, and
a vector b € ZZ}
OUTPUT: Vol(K) for K = {x € [0,1]" | Ax < b}

aj

where A =
an

\ 4

n=2

m+1
nmlogm | time

It runs in O ((n?z)

|for const. m

O(n’e3) when m = 2
0(n°¢%) when m = 3
O(n''e™>) when m = 4

Future work

Is FPTAS for more general polytope




Talk sketch

3. Deterministic approximation of volume Il
» FPTAS for the Volume of some V-polytope

i. Problem description

ii. Idea: Reduction to Vol(C(0,1) n C(c,1))
iii. Core: FPTAS for Vol(C(0,1) n C(c, 1))
iv. #P-hardness of Vol(C(0,1) n C(c,1))
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3. Deterministic Approximation of

| the volume of some V-polytope

Ei Ando (Sojo Univ), Shuji Kijima (Kyushu Univ.)

Ei Ando, Shuji Kijima, An FPTAS for the volume of a V-polytope - it is hard to compute
the volume of the intersection of two cross-polytopes,arXiv:1607.06173, 2016.



Talk sketch

3. Deterministic approximation of volume Il
» FPTAS for the Volume of some V-polytope

i. Problem description

ii. Idea: Reduction to Vol(C(0,1) n C(c,1))
iii. Core: FPTAS for Vol(C(0,1) n C(c, 1))
iv. #P-hardness of Vol(C(0,1) n C(c,1))
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H-polytope V-polytope

An H -polytope is an intersection of finitely many closed
half-space in R™.

A V-polytope is a convex hull of a finite point set in R™.

In 2-D, the difference may seem vague.
Consider n-D hypercube: 2n facets and 2™ vertices.
Consider n-D cross-polytope (L,-ball): 2"™facets and 2n vertices.
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Approximating the volume is hard. ote
Independent from P vs.NP.

[Elekes 1986] (cf. [Lovasz 1986])

As given a convex body by a membership oracle,

no polynomial time deterministic algorithm approximates

its volume within the ratio 1.999".

> If the convex body is a polytope, then there may be
a much better way ... [Lovasz 1986]

Dyer and Frieze [1988]

Computing the volume of a 0-1 knapsack polytope is #P-hard.
Khachiyan [1989]
Computing the volume of a “polar” knapsack polytope is #P-hard,
motivated by the complexity of the volume a V-polytope.




Knapsack “dual” polytope

75

Input: Positive integers a = (a4, ..., a,) € Z%,

Output: Volume of the knapsack “dual” polytope P, given by
P, & conv{teq, t+e,,..., te,, a}
= conv{C(0,1), a}

where e; denotes the i-th unit vector.

Notation
For convenience, let

Clc,r) € convictre;|li=1,..n}
={ceR"||[x—c|l; =7}

forc e R" and r € R,,.

#P-hard [Khachiyan 1989]



Knapsack “dual” polytope

76

Input: Positive integers a = (a4, ..., a,) € Z%,

Output: Volume of the knapsack “dual” polytope P, given by
P, & conv{teq, t+e,,..., te,, a}
= conv{C(0,1), a}

where e; denotes the i-th unit vector.

Notation

For convenience let
Clc,r) & conv{c+re li=1,..

={ceR"|[lx—c]; < r}

Thm. [Ando & Kijima 16]

n}

For any € (0 < € < 1), there exists an algorithm which

outputs Z satisfying
(1—¢€)Vol(P) <Z < (1+¢€)Vol(P)

#'m O( 10) time.




Talk sketch

3. Deterministic approximation of volume Il

» FPTAS for the Volume of some V-polytope

ii. Idea: Reduction to Vol(C(0,1) n C(c, 1))
iii. FPTAS for Vol(C(0,1) n C(c,1))
iv. #P-hardness of Vol(C(0,1) n C(c,1))
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Approximate P, by the union of a geometric series of 7|8

|dea .
Crosspolytopes converging to a.

! P, = conv{C(0,1),a} ‘
Let Q, & C ((1 — ,Bk)a,ﬁk) for some B (0 < 8 < 1)

D QO — C(O, 1)

Q1 =C((1-p)ap)

\Qoo — C(a, 0) j

1
Precisely



Union of geometric series of cross-polytopes

Lemma 1

f1—p <

C1€

n|lall4

(1 —cq€) - Vol(P,) < Vol (UOO Qy

where 0 < c;e < 1, then

k=0

) < Vol(P,)
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|dea

Approximate P, by the union of a geometric series of
Crosspolytopes converging to a.

Let Q, & C ((1 — ,Bk)a,ﬁk) for some B (0 < 8 < 1)

G QO — C(O, 1)

Q1 =C((1-p)ap)

\Qoo — C(a, O) )

Vol(P,) = Vol <UZO_OQR>




|dea

Approximate P, by the union of a geometric series of
Crosspolytopes converging to a.

Let Q, & C ((1 — ,Bk)a,ﬁk) for some B (0 < 8 < 1)

D QO — C(O, 1)

Q1 =C((1-p)ap)

\Qoo — C(a, 0) j

Vol(Pa)2V01< - Qk>
0

\_ | =

= Vol ( L k:O(Qk \ Qk+1)>

= Vol(Qk \ Qk+1)

k=0

0 Vol
=7 Brvol(Qe \ r) = L0\ Q)
k=0 1-p0




|dea

Approximate P, by the union of a geometric series of
Crosspolytopes converging to a.

Let Q, & C ((1 — ,Bk)a,ﬁk) for some B (0 < 8 < 1)

D QO — C(O, 1)

Q1 =C((1-p)ap)

\Qoo — C(a, 0) j

Vol(P,) = Vol <L Zo—oQk>

/QO \ @, is not convex = intractable ’ (Q \ Qk+1)>

k=0

Vol(Qp \ Q1) = Vgl(Qo) — Vol(Qo N Q4) 0l(Qk \ Qk+1)

2 _.<_ _D
= — = Vol(Qo N Q1) J?RVOI 00\ Qp) = Vol(Qo \ @

1—p"

\QO N Q, is convex = tractable
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Requirements to S are conflict, but is possible to be settled

Lemma 1
If 1 - <

C1€

where 0 < c;e < 1, then
nllall4

(1 —cq€) - Vol(P,) < Vol (Uoo Qk> < Vol(R,)

k=0

Proposition

Vol <Uk=0Qk> ~1—pn (n! — Vol(Qo N Q1)>




|Approximate P, by the union of a geometric series 0144

/V

“—” is a dangerous operation in approximation:

For example,
suppose you know x = 49 with approximate ratio 1%.
Clearly, 50 + x = 99 with approximate ratio 1%.
We hope 50 — x = 1, however it may be 0.5, 0.1, or 0.0001 etc.
\§
IO::OQk>
(o ECAYS)
ol(Qx \ Qx+1)
kVOl(Qo \ Q1?=VO%’B\—,I@

\QO N Q, is convex = tractable




|dea

Approximate P, by the union of a geometric series of
Crosspolytopes converging to a.

Let Q, & C ((1 — ,Bk)a,ﬁk) for some B (0 < 8 < 1)

a Y‘ i.e.
D QO — C(Or 1)

Q1 =C((1-p)ap)

~

’ /We show that

if 1 — f is sufficiently large,

/QO \ Q; is not convex =i

Vol(Qp \ Q1) = VSI(QO) 1

then
Vol(Qo \ Q1) = = = Vol(Qo N Q1)

\iolds in the sense of approximation/

i.e., Qg \ 0 is sufficiently large,

\

\QO N Q4 1s convex = tractabre 7
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Requirements to S are conflict, but is possible to be settled

Lemma 1
If 1 - <

where 0 < c;e < 1, then

nHIh

(1 —cq€) - Vol(P,) < Vol (U Qk> < Vol(R,)
k=0

Proposition

Vol (Uk=0Qk> ~1—pn (n! — Vol(Qo N Q1)>

where 0 < cy,e < 1.

Lemma 2
Suppose 1 —f >

nIIa||1

If we have Z approximating Vol(Q, N Q) such that
Vol(Qo N Q1) < Z < (1 + c¢)Vol(Qp N Qq),
then % — Z satisfies

2N 21 21
(1—e)- <— — Vol(Qo N Q1)> <n_ — Z) (W — Vol(Qo N Q1)>




Talk sketch

3. Deterministic approximation of volume Il

» FPTAS for the Volume of some V-polytope

iii. FPTAS for Vol(€(0,1) n C(c, 1))
iv. #P-hardness of Vol(C(0,1) n C(c,1))
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The volume of an intersection of two cross-polytopes

Input: ¢ = (cy, ..., c,) € Q% and r (0 < r < 1) such that ||c||l; < .
Output: approximation of Vol(C(0,1) n C(c, 1))

Recall
Clc,r) ®conv{ctre;|li=1,..n}
={ceR"|[[x—cl|{ <7}

A

Lemma [Ando & Kijima 16+]
Suppose |[c||l{ £ r. Forany § (0 <6 < 1), let M := [4n?671]

then G,,(1,r) satisfies
Vol(€(0,1) nC(c, 1)) < G,(1,7) < (14 6) - Vol(€(0,1) n C(c, 1))

G,(1,7) is calculated in O(n”§~3) time.

N L

Algorithm is based on an approximate convolution




Convolution to compute Vol(C(0,1) n C(c,1))

Def.

Let

Wy — 1 ifu=0andv =0
0 0 otherwise

and recursively (w.r.t. i), let

1
Y. (u,v) = f Y._(u—|s|,v—|s—cl)ds
—1

Prop.
Y. (1,r) =Vol(C(0,1) nC(c,1))

Proof sketch.

1 i i
?‘Pi(u, v) = Pr [<zj=1|Xj| < u) A (ij

|Xj — cj| < v)
1
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Riemann sum

Def.
Let

G der 1 ifu=0andv =0,
0 0 otherwise.

Recursively, let
1

G;(u,v) & j Gi_i(u—|s|,v—|s—cl|)ds
~1
and let

def v 1 r|M
G;(u,v) ¥ G; (M [Mu],M[7vD

Notice that G;(u, v) is a step function, which implies

that [ appearing in the def. of G;(u,v) is replaced by Y.



G; is calculated efficiently (omit the detail)

Let
1

Gi(u,v) = j GioyGu—Is],v— s — ¢;)ds
~1

where ty, ty, ..., t,, (m = 0(M)) are event points.

|:> meaning that we can compute G; (without [ )
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The volume of an intersection of two cross-polytopes

Input: ¢ = (¢, ...,c;;) € Q% and r (0 < r < 1) such that ||c||; < r.
0

Output: approximation of Vol(C(0,1) n C(c, 1))

Recall
Clc,r) ®conv{ctre;|li=1,..n}
={ceR"|[[x—cl|{ <7}

Lemma [Ando & Kijima 16+]
Suppose ||c|l{ < 7. Forany § (0 < 6 < 1), let M := [4n?571]

then G,,(1,r) satisfies
Vol(€(0,1) nC(c,1)) < G,(1,7) < (1 +6) - Vol(€(0,1) n C(c,1)).

G,(1,7) is calculated in O(n”673) time.

(Analysis of approximation ratio uses the techniques
v" “horizontal approximation” and
v “cone bound”

na similar way as 0-1 knapsack P




Talk sketch
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1. Randomized approximation of counting
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Volume of an intersection of two L, balls is #P-hard

Thm.

Let ¢ = (¢4, ...,c,) EZL, and 1y, 1, E Z,

such that ||c||; £ min(ry, 1), i.e., c€ C(0,1;) and 0 € C(c, 1)
Then computing Vol(C(0,7,) n C(c,13)) is #P-hard.

Proof sketch
Reduce (a version of) counting subset sum.
Intuitively, as given a € ZZ,, we show that

Vol(C(O 1+¢€)NC(Sa 1)) —Vol(C(0,1) N C(da,1))

—IGE{ 11}"|Zl ,o0ia; > 0|

when 0 < e < 6

IIaI|1
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Volume of an intersection of two L, balls is #P-hard

Claim
€
Vol(€(0,1 +€) nC(da,1)) — Vol(€(0,1) N C(sa, 1)) = —loe{=11)" | X, 00, > 0|

(C(5a, 1) N Ce_i1y(0,1+ e)) \ C(0, )] _(C(‘S“' DN Cun(0,1+ 6)) \ €(0,1)

C(0,1+¢)

Fig. When an instance does not have a subset-sum solution
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Volume of an intersection of two L, balls is #P-hard

Claim
€
Vol(€(0,1 +€) nC(da,1)) — Vol(€(0,1) N C(sa, 1)) = —loe{=11)" | X, 00, > 0|

N

_;555555::_(C(5a, 1) N Ci119(0,1 + e)) \ C(0,1)

C0,1+¢€)

Fig. When an instance has a subset-sum solution
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Open problems

V-polytope

O When is computing the n-D volume of a V-polytope hard?
v It is #P-hard for at most 2n + 1 vertices [Khachiyan]

v’ It is poly(n) time (using some v s) for n+const. vertices.

> e.g., n+ 1 vertices implies simplex, which is easily computed.

O Is there an FPTAS for any V-polytope?
OO0 What is known about the volume for “duality” of polytopes
O How many vertices of intersection of two cross-polytopes?

Deterministic approximation for #P-hard problems

O #linear extensions ?



!'- Concluding Remarks



Talk sketch

0. Introduction

1. Randomized approximation of counting

2. Deterministic approximation of volume |

3. Deterministic approximation of volume II

-

.

Randomness is necessary for some computation.

But when?

~
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!'- The end

Thank you for the attention.



