Approximating Volume ---Randomized vs. Deterministic

Fukuoka (福岡)

This talk wass/is partly supported by MEXT KAKENHI Grant Number 24106005, JSPS KAKENHI Grant Number 25700002, JST PRESTOGrant Number JPMJPR16E4.

Shuji Kijima ${ }^{1,2}$

1. Kyushu Univ., Fukuoka, Japan
2. JST PRESTO, Fukuoka, Japan

Combinatorial Problems and Exercise [Lovasz 1979]

§1. Basic Enumeration

1. In a shop there are k kinds of postcards. We want to send postcards to n friends.
(i) How many different ways can this be done?
$>$
(ii) What happens if we want to send them different cards?
(iii) What happens if we want to send two different cards to each of them (but different persons may get the same card)?

Combinatorial Problems and Exercise [Lovasz 1979]

§1. Basic Enumeration

1. In a shop there are k kinds of postcards. We want to send postcards to n friends.
(i) How many different ways can this be done?
$>k^{n}$
(ii) What happens if we want to send them different cards?
(iii) What happens if we want to send two different cards to each of them (but different persons may get the same card)?

Combinatorial Problems and Exercise [Lovasz 1979]

§1. Basic Enumeration

1. In a shop there are k kinds of postcards. We want to send postcards to n friends.
(i) How many different ways can this be done?
$>k^{n}$
(ii) What happens if we want to send them different cards?
$>\frac{k!}{(k-n)!}$ (which is 0 if $n>k$)
(iii) What happens if we want to send two different cards to each of them (but different persons may get the same card)?

Combinatorial Problems and Exercise [Lovasz 1979]

§1. Basic Enumeration

1. In a shop there are k kinds of postcards. We want to send postcards to n friends.
(i) How many different ways can this be done?
$>k^{n}$
(ii) What happens if we want to send them different cards?
$>\frac{k!}{(k-n)!}$ (which is 0 if $n>k$)
(iii) What happens if we want to send two different cards to each of them (but different persons may get the same card)?
$>\binom{k}{2}^{n}$

Combinatorial Problems and Exercise [Lovasz 1979]

§1. Basic Enumeration
2. We have k distinct post cards and want to send them all to our n friends (a friend can get any number of post cards, including 0).
(i) How many ways can this be done?
(ii) What happens if we want to send at least one card to each friend?

Combinatorial Problems and Exercise [Lovasz 1979]

§1. Basic Enumeration

2. We have k distinct post cards and want to send them all to our n friends (a friend can get any number of post cards, including 0).
(i) How many ways can this be done?
$>n^{k}$
(ii) What happens if we want to send at least one card to each friend?

Combinatorial Problems and Exercise [Lovasz 1979]

§1. Basic Enumeration

2. We have k distinct post cards and want to send them all to our n friends (a friend can get any number of post cards, including 0).
(i) How many ways can this be done?

$$
>n^{k}
$$

(ii) What happens if we want to send at least one card to each friend?

$$
>n!\cdot\left\{\begin{array}{l}
k \\
n
\end{array}\right\}
$$

Stirling number of the second kind $\left\{\begin{array}{l}k \\ n\end{array}\right\}$ counts the number of ways to partition a set of k elements into n nonempty subsets.

$$
\left\{\begin{array}{l}
k \\
n
\end{array}\right\}=\left\{\begin{array}{c}
k-1 \\
n-1
\end{array}\right\}+n\left\{\begin{array}{c}
k-1 \\
n
\end{array}\right\}
$$

holds. [Wikipedia "Stirling number"]

Another interesting counting problem in [Lovasz 1979]
§1. Basic Enumeration
32. How many shortest paths from s to t in the $n \times n$ grid?

Another interesting counting problem in [Lovasz 1979]

§1. Basic Enumeration

32. How many shortest paths from s to t in the $n \times n$ grid?
$>\binom{2 n}{n}$

Another interesting counting problem in [Lovasz 1979]
§1. Basic Enumeration
32. How many shortest paths from s to t in the $n \times n$ grid? $>\binom{2 n}{n}$
33. How many shortest paths from s to t in the $n \times n$ grid upper than diagonal?

5×5 grid

Another interesting counting problem in [Lovasz 1979]
§1. Basic Enumeration
32. How many shortest paths from s to t in the $n \times n$ grid?

$$
>\binom{2 n}{n}
$$

33. How many shortest paths from s to t in the $n \times n$ grid upper than diagonal?

$$
>\binom{2 n}{n}-\binom{2 n}{n-1}=\frac{2 n!}{n!(n+1)!} \quad \text { (Catalan number) }
$$

5×5 grid

Counting is a foundation of Combinatorics

\#permutations of n elements is n !
\#k combinations of n elements is $\binom{n}{k}=\frac{n!}{(n-k)!k!}$
\#Dyck path = \#binary trees = \#proper parentheses = ... is known as Catalan number $=\binom{2 n}{n}-\binom{2 n}{n-1}=\frac{2 n!}{n!(n+1)!}$
\# spanning trees \Rightarrow Matrix tree theorem
Many known formula for counting combinatorial objects (while some of them do not have an "explicit form" ...such as Stirling number)
... And, many more combinatorial objects for which efficient way to count is not known.

Combinatorics, Probability and Computing are closely related

Combinatorics, Probability and Computing are closely related

Combinatorics

History: mainly from the view point of computing
1979, Valiant, Introduce the class \#P
1982, Aldous, coupling method for mixing time
1986, Jerrum, Valiant, Vazirani, relation b/w count \& sample 1989, Jerrum, Sinclair, conductance for mixing. (expander)
1989, Toda, $\mathrm{PH} \subseteq \mathrm{P}^{\# \mathrm{P}}$
1991, Dyer, Frieze, Kannan, FPRAS for convex body (MCMC)
1996, Propp, Wilson, perfect sampling (cftp)
1997, Bubley, Dyer, path coupling for mixing time 2004, Jerrum, Sinclair, Vigoda, FPRAS for permanent (MCMC) probability

Scope of this talk

This talk is concerned with approximate counting/integral
... mainly from the computational view (rather than structure)

Is randomness really necessary for computing?

Talk sketch

0. Introduction
$>$ Counting is a foundation of Combinatorics
1. Randomized approximation for counting
2. Deterministic approximation of volume I
3. Deterministic approximation of volume II

Is randomness really necessary for computing?

0. Introduction

1. Randomized approximation for counting
> Approximate \# simple paths on grid, by MCMC
i. Problem description
ii. Idea for approximate counting
iii. How to sample from Ξ_{k} ?
iv. Then, we counted
2. Deterministic approximation of volume I
3. Deterministic approximation of volume II

a.k.a. self-avoiding walk

1. Counting simple paths on grid by MCMC

Yuki Shibata, Yukiko Yamauchi,
Shuji Kijima, Masafumi Yamashita
Kyushu Univ.

Counting self－avoiding walk（おねえさん問題 in JP）

Q．How many simple paths on $n \times n$ grid from the NW corner (s) to the SE corner (t) ．

Minato ERATO，＂The Art of 10＾64－Understanding Vastness－＂Time with class！ Let＇s count！，YouTube，2012／9／10， https：／／www．youtube．com／watch？v＝Q4gTV4rOzRs

MINATO ERATO youtube

Facts, and our target
\checkmark We don't know any efficient way to calculate the number, say poly(n) time, even for approximation.
\checkmark The number for $n=26$ is roughly 1.74×10^{163}, where the exact value is presented by [Iwashita et al. 2013], which is the state of the art for exact counting.
\checkmark Counting simple paths in general planer graph is \#Phard [Provan 1986]

- We in this talk will approximately count it by MCMC.
*H. Iwashita, Y. Nakazawa, J. Kuwahara, T. Uno, S. Minato, Efficient computation of the number of paths in a grid graph with minimal perfect hash functions, Hokkaido University TCS Technical Report, TCS-TR-A-13-64, 2013.

0. Introduction
1. Randomized approximation of counting
> Approximate \# simple paths on grid, by MCMC
i. Problem description
ii. Idea for approximate counting
iii. How to sample from Ξ_{k} ?
iv. Then, we counted
2. Deterministic approximation of volume I
3. Deterministic approximation of volume II

Two basic idea

Notations

What we want is $|\Omega|\left(=\left|\Xi_{L^{*}}\right|\right)$.

- $\Omega=$ \{s-t simple paths $\}$
- $\Xi_{k}=\{\mathrm{s}-\mathrm{t}$ simple paths with length at most $k\}$

$$
\left(k=2 n, 2 n+2,2 n+4, \ldots, L^{*}\right)
$$

where L^{*} denotes the length of the longest path:

$$
L^{*}=\left\{\begin{array}{l}
(n+1)^{2}-1 \text { (if } n \text { is odd) } \\
(n+1)^{2}-2 \text { (if } n \text { is even) }
\end{array}\right.
$$

Self-reducibility
$\left|\Xi_{L^{*}}\right|=\frac{\left|\Xi_{L^{*}}\right|}{\left|\Xi_{L^{*}-2}\right|} \cdot \frac{\left|\Xi_{L^{*}-2}\right|}{\left|\Xi_{L^{*}-4}\right|} \cdots \frac{\left|\Xi_{2 n+4}\right|}{\left|\Xi_{2 n+2}\right|} \cdot \frac{\left|\Xi_{2 n+2}\right|}{\left|\Xi_{2 n}\right|} \cdot\left|\Xi_{2 n}\right|$

Idea 2.

inverse $\frac{\left|\Xi_{k-2}\right|}{\left|\Xi_{k}\right|}$ is estimated by a Monte Carlo

Idea 1.
$\left|\Xi_{2 n}\right|=$ \#shortest paths

$$
=\binom{2 n}{n}
$$

Parameters:

τ (number of transitions of a Markov chain)
M (number of samples for Monte Carlo)
Input: n (size of grid).
Output: Z (approximation of s-t paths)
Set $Z:=1$;
For ($k=2 n+2 ; k<L^{*} ; k:=k+2$) \{ Set $X \in \Xi_{k} ;(X$ is init. config. of MC) Set $S:=0$; (S is a counter) for(i=0; $i<M ; i++)\{$
for($\mathrm{j}=0 ; \mathrm{j}<\tau ; \mathrm{j}++)\{$
\quad Update X (Markov chain)
if $\left(X \in \Xi_{k-2}\right)$ S++;
\}
Set $Z:=Z * \frac{M}{S}$;
\}
Output Z;

Thm.

For any $\epsilon(0<\epsilon<1)$ and $\delta(0<\delta<1)$,
let $M=12 n^{3}\left(2 n^{2} \epsilon^{-1}\right)^{2} \ln \left(n^{2} \delta^{-1}\right)$ for the number of uniform samples from $\Xi_{k}\left(k=2 n, 2 n+2, \ldots, L^{*}\right)$, then the approximate solution Z satisfies

$$
\operatorname{Pr}[(1-\epsilon)|\Omega| \leq Z \leq(1+\epsilon)|\Omega|] \geq 1-\delta .
$$

How to sample uniformly from Ξ_{k} ?

Talk sketch

0. Introduction
1. Randomized approximation of counting
> Approximate \# simple paths on grid, by MCMC
i. Problem description
ii. Idea for approximate counting
iii. How to sample from Ξ_{k} ?
iv. Then, we counted
2. Deterministic approximation of volume I
3. Deterministic approximation of volume II

As a preliminary step, we give a representation of ...

$s-t$ simple path
simply connected coloring
Prop.
$|\Omega|(=\mid\{s-t$ simple paths $\} \mid)$
$=\mid\{$ simply connected coloring\}|

Markov chain for simply connected coloring

Markov chain $M C$
State space: Ξ_{k},
Transition $X \rightarrow X^{\prime}$:
Step 1. Choose a cell c u.a.r.
Step 2. Let Y be a state $X \oplus c$.
Step3. If $Y \in \Xi_{k}$ then set $X^{\prime}=Y$, else set $X^{\prime}=X$.

Markov chain for simply connected coloring

Markov chain MC
State space: Ξ_{k},
Transition $X \rightarrow X^{\prime}$:
Step 1. Choose a cell c u.a.r.
Step 2. Let Y be a state $X \oplus c$.
Step3. If $Y \in \Xi_{k}$ then set $X^{\prime}=Y$, else set $X^{\prime}=X$.

Check!

- Is Y a simply connected coloring? and
- Is the length (corresponding s-t path) at most k ?

Actual implementation is based on specific case analysis for practical speed up.

Thm.
 The MC has the unique limit distribution, which is uniform over Ξ_{k}

Sketch of proof

- MC is irreducible (transition diagram over Ξ_{k} is strongly connected)
- MC is aperiodic
- MC satisfies detailed balanced equation

$$
\forall X, Y \in \Xi_{k}, \operatorname{Pr}(X \rightarrow Y)=\operatorname{Pr}(Y \rightarrow X)
$$

Foundations of the MCMC

- irreducible and aperiodic finite Markov chain has the unique stationary distribution.
- detailed balanced equation

$$
\forall X, Y \in S, \operatorname{Pr}(X \rightarrow Y)=\operatorname{Pr}(Y \rightarrow X)
$$

holds, then the stationary distribution is uniform over S.

The idea of "sampling via Markov chain"

Start from arbitrary initial state
Make several transitions
Output a sample
\Rightarrow outputs after many transitions asymptotically according to its stationary distribution
0. Introduction

1. Randomized approximation of counting
> Approximate \# simple paths on grid, by MCMC
i. Problem description
ii. Idea for approximate counting
iii. How to sample from Ξ_{k} ?
iv. Then, we approximately counted
2. Deterministic approximation of volume I
3. Deterministic approximation of volume II

Computational results by MCMC

\# steps of MC per sample	$\tau=30$
\# samples	$M=10^{7}$

n	True value*	approx.	time
25	8.40 * 10^{150}	$8.55{ }^{*} 10^{150}$	1h 27m
26	$1.74{ }^{*} 10^{163}$	1.78 * 10^{163}	1h 33m
30	unknown	2.09 * $10^{\mathbf{2 1 7}}$	2h 4m
50	unknown	$6.35 * 10^{603}$	5h 44m
100	unknown	6.07 * 10^{2415}	23h 20m
200	unknown	$1.196{ }^{*} 10^{9667}$	96h

(approx. is the average of five trials)

We want to tell her ．．．
The number of paths seems about $10^{0.2415 n^{2}} \simeq 1.744^{n^{2}}$
（conjecture：no proof yet）
$\log _{10} Z$

$\sqrt{3}$ conjecture

$$
\begin{aligned}
|\Omega| & \geq \sqrt{3}^{n^{2}} \\
& =(1.732 \ldots)^{n^{2}}
\end{aligned}
$$

Plot of $\left(n, \log _{10} Z\right)$
： $\mathrm{n}=1-26$ true value
： $\mathrm{n}=1 \sim 200$ approx．value
$: y=0.2415 x^{2}$

Discussion for Section 1: Open Problems

\#simple paths (a.k.a. self-avoiding walk)
\square Is the mixing time of MC poly (n) ?
\square Or, exists (another) poly (n) time randomized approx. algo.?

- $\sqrt{3}$-conjecture.
\checkmark LB 1.628, UB 1.782, [Bousquet-Melos, Guttmann Jensen, 2005]
\checkmark asymptotically $1.744550 \simeq 10^{0.24168} \leftarrow$ questionable
FPRAS (fully polynomial-time randomized approximation scheme)
- \#simple paths (in general planer graph)

ㅁ \#BIS / \#down sets / log-supermodular distribution

- \#forests / Tutte polynomial

	$\|\Omega\|$	$\log _{10}\|\Omega\|$	$\frac{\log _{10}\|\Omega\|}{n^{2}}$
1	2	0.301030	0.301030
2	12	1.079181	0.269795
3	184	2.264818	0.251646
4	8512	3.930032	0.245627
5	1262816	6.101340	0.244054
6	575780564	8.760257	0.243340
7	$7.8936 \mathrm{E}+11$	11.897275	0.242802
8	$3.2666 \mathrm{E}+15$	15.514096	0.242408
9	$4.10442 \mathrm{E}+19$	19.613252	0.242139
10	$1.56876 \mathrm{E}+24$	24.195556	0.241956
11	$1.82413 \mathrm{E}+29$	29.261056	0.241827
12	$6.4528 \mathrm{E}+34$	34.809748	0.241734
13	$6.94507 \mathrm{E}+40$	40.841676	0.241667
14	$2.2745 \mathrm{E}+47$	47.356885	0.241617
15	$2.26675 \mathrm{E}+54$	54.355403	0.241580
16	$6.87454 \mathrm{E}+61$	61.837244	0.241552
17	$6.34481 \mathrm{E}+69$	69.802419	0.241531
18	$1.78211 \mathrm{E}+78$	78.250935	0.241515
19	$1.52334 \mathrm{E}+87$	87.182798	0.241504
20	$3.96289 \mathrm{E}+96$	96.598012	0.241495
21	$3.1375 \mathrm{E}+106$	106.496580	0.241489
22	$7.5597 \mathrm{E}+116$	116.878505	0.241485
23	$5.5435 \mathrm{E}+127$	127.743787	0.241482
24	$1.2372 \mathrm{E}+139$	139.092430	0.241480
25	$8.403 \mathrm{E}+150$	150.924433	0.241479

Plot of $\log _{10}|\Omega|$

Plot of $\frac{\log _{10}|\Omega|}{n^{2}}$

So what?

MCMC is a powerful and useful technique for randomized approximate counting/integral.
...However, "Is randomness really necessary for computing?"
0. Introduction

1. Randomized approximation of counting
2. Deterministic approximation of volume I
$>$ FPTAS for the volume of 0-1 knapsack polytope
i. Problem description
ii. Convolution for the exact volume
iii. Riemann sum for approximate convolution iv. Analysis
3. Deterministic approximation of volume II

2. Deterministic Approximation of the volume of a 0-1 knapsack polytope

Ei Ando (Sojo Univ), Shuji Kijima (Kyushu Univ.)

Ei Ando and Shuji Kijima, An FPTAS for the volume computation of 0-1 knapsack polytopes based on approximate convolution, Algorithmica, 76:4 (2016), 1245--1263.

Ei Ando, Shuji Kijima, An FPTAS for the volume of a V-polytope - it is hard to compute the volume of the intersection of two cross-polytopes, arXiv:1607.06173, 2016.

0-1 knapsack polytope

Input: positive integers a_{1}, \ldots, a_{n}, b
Output: the volume of 0-1 knapsack polytope K

$$
K=\left\{\boldsymbol{x} \in[0,1]^{n} \mid a_{1} x_{1}+\cdots+a_{n} x_{n} \leq b\right\}
$$

$$
n=2
$$

Approximating the volume is hard.

[Elekes 1986] (cf. [Lovász 1986])

As given a convex body by a membership oracle, no polynomial time deterministic algorithm approximates its volume within the ratio 1.999^{n}.
$>$ If the convex body is a polytope, then there may be a much better way ... [Lovász 1986]

Dyer and Frieze [1988]

Computing the volume of a $0-1$ knapsack polytope is \#P-hard. (cf. Counting the number of 0-1 knapsack solutions is \#P-hard [Valiant 79])

History: Randomized Approximation (FPRAS)

Convex body

Dyer, Frieze and Kannan [1991] Randomized Approximation Scheme
$0^{*}\left(n^{23}\right)$ time (The first FPRAS)

Fully Polynomial-time :

Lovász and Vempala [2006]
 $0^{*}\left(n^{4}\right)$ time
 Cousins and Vempala [2015]

$0^{*}\left(n^{3}\right)$ time
\#0-1 knapsack solutions
Morris and Sinclair [2004]
poly (n) time (MCMC)
Dyer [2003]
$0^{*}\left(n^{2.5}\right)$ time (dynamic programming)

History Deterministic approximations for \#P-hard problems

\#0-1 knapsack solutions

Dyer [2003]
\sqrt{n} approximation
Gopalan, Klivans and Meka [FOCS 2011]
FPTAS (Fully Polynomial Time Approximation Scheme)
Štefankovič, Vempala and Vigoda [FOCS 2011]
FPTAS based on dynamic programming

Volume of 0-1 knapsack polytope

Li and Shi [2014]
FPTAS $0\left(\frac{n^{3}}{\epsilon^{2}} \log \frac{1}{\Delta^{2}} \log b\right)$ time, based on dynamic programming Ando and Kijima [2016]

FPTAS O $\left(\frac{n^{3}}{\epsilon}\right)$ time, based on approximate convolution

Comparison with Li-Shi

Li and Shi [2014]
\checkmark Counting the number of grids in the knapsack polytope (based on the DP by Štefankovič et al.)
$\checkmark \quad 0\left(\frac{n^{3}}{\epsilon^{2}} \log \frac{1}{\Delta^{2}} \log b\right)$ time

Ando and Kijima [2016]

\checkmark Approximate convolution (different approach)
\checkmark O $\left(\frac{n^{3}}{\epsilon}\right)$ time

0. Introduction

1. Randomized approximation of counting
2. Deterministic approximation of volume I
$>$ FPTAS for the volume of 0-1 knapsack polytope
i. Problem description
ii. Convolution for the exact volume
iii. Riemann sum for approximate convolution iv. Analysis
3. Deterministic approximation of volume II

0-1 knapsack polytope

Input: positive integers a_{1}, \ldots, a_{n}, b
Output: the volume of 0-1 knapsack polytope K

$$
K=\left\{\boldsymbol{x} \in[0,1]^{n} \mid a_{1} x_{1}+\cdots+a_{n} x_{n} \leq b\right\}
$$

Compute $\operatorname{Vol}(\mathrm{K})$ is \#P-hard
Dyer and Frieze [1988]

Thm. [Ando \& Kijima 16]
For any $\epsilon(0<\epsilon<1)$, there exists an algorithm which outputs Z satisfying

$$
(1-\epsilon) \operatorname{Vol}(K) \leq Z \leq(1+\epsilon) \operatorname{Vol}(K)
$$

in $0\left(\frac{n^{3}}{\epsilon}\right)$ time.

As a preliminary step, Normalize knapsack coefficients

For convenience, we normalize coefficients:
Let $\widetilde{a_{j}}=\frac{a_{j}}{b} M$, and let

$$
\widetilde{K}:=\left\{\boldsymbol{x} \in[0,1]^{n} \mid \widetilde{\boldsymbol{a}}^{\top} \boldsymbol{x} \leq M\right\} .
$$

Recall

$$
K:=\left\{\boldsymbol{x} \in[0,1]^{n} \mid \boldsymbol{a}^{\top} \boldsymbol{x} \leq b\right\} .
$$

Prop.

$$
K=\widetilde{K}
$$

$M \in \mathbb{Z}_{>0}$ is a parameter for approximation

Convolution for $\operatorname{Vol}(\widetilde{K})$

Def.
Let

$$
\Phi_{0}(y)= \begin{cases}0, & y<0 \\ 1, & y \geq 0\end{cases}
$$

and recursively (w.r.t. j) let

$$
\Phi_{j}(y):=\int_{0}^{1} \Phi_{j-1}\left(y-\widetilde{a}_{j} s\right) \mathrm{d} s
$$

Prop.
$\Phi_{n}(M)=\operatorname{Vol}(\widetilde{K})$

convolution at j-th dim.

Figure for the inductive convolution

$$
\Phi_{j}(y):=\int_{0}^{1} \Phi_{j-1}\left(y-\widetilde{a}_{j} s\right) \mathrm{d} s
$$

$$
\widetilde{K}_{j}[s]:=\left\{\left(x_{1}, \ldots, x_{j-1}, x_{j}\right) \in \widetilde{K}_{j} \mid x_{j}=s\right\}
$$

$$
\operatorname{Vol}_{j}\left(\widetilde{K}_{j}\right)=\int_{0}^{1} \operatorname{Vol}_{j-1}\left(\widetilde{K}_{j}[s]\right) \mathrm{d} s
$$

Figure for the inductive convolution

$$
\Phi_{j}(y):=\int_{0}^{1} \Phi_{j-1}\left(y-\widetilde{a}_{j} s\right) \mathrm{d} s
$$

$$
\begin{aligned}
\widetilde{K}_{j}[s]: & =\left\{\left(x_{1}, \ldots, x_{j-1}, x_{j}\right) \in \widetilde{K}_{j} \mid x_{j}=s\right\} \\
& \left.=\left\{\left(x_{1}, \ldots, x_{j-1}, x_{j}\right) \in[0,1]\right]^{j} \mid \tilde{a}_{1} x_{1}+\cdots+\tilde{a}_{j-1} x_{j-1}+\tilde{a}_{j} x_{j} \leq y, x_{j}=s\right\} \\
& =\left\{\left(x_{1}, \ldots, x_{j-1}, s\right) \in[0,1]^{j} \mid \tilde{a}_{1} x_{1}+\cdots+\tilde{a}_{j-1} x_{j-1} \leq y-\tilde{a}_{j} s\right\}
\end{aligned}
$$

$$
\operatorname{Vol}_{j}\left(\widetilde{K}_{j}\right)=\int_{0}^{1} \operatorname{Vol}_{j-1}\left(\widetilde{K}_{j}[s]\right) \mathrm{d} s
$$

$$
\Phi_{j-1}\left(y-\widetilde{a}_{j} s\right)=\operatorname{Vol}_{j-1}\left(\widetilde{K}_{j}[s]\right)
$$

Proof Sketch

$$
\Phi_{j}(y):=\operatorname{Pr}\left[\tilde{a}_{1} X_{1}+\cdots+\tilde{a}_{j} X_{j} \leq y\right]
$$

Proof Sketch (recursion)

Let

$$
\Phi_{0}(y)= \begin{cases}0, & x<0 \\ 1, & x \geq 0\end{cases}
$$

(indicator function),

$$
\Phi_{1}(y)=\int_{0}^{1} \Phi_{0}\left(y-\tilde{a}_{1} s\right) d s=\operatorname{Pr}\left[y-\tilde{a}_{1} X_{1} \geq 0\right]=\operatorname{Pr}\left[\tilde{a}_{1} X_{1} \leq y\right]
$$

and we obtain the claim for $j=1$.

Proof Sketch

$$
\Phi_{j}(y):=\operatorname{Pr}\left[\tilde{a}_{1} X_{1}+\cdots+\tilde{a}_{j} X_{j} \leq y\right]
$$

Recursively assuming the claim when $j-1$
$f:$ uniform density on $[0,1]$ $f(s)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}$

$$
\begin{aligned}
& \operatorname{Pr}\left[\tilde{a}_{1} X_{1}+\cdots+\tilde{a}_{j-1} X_{j-1}+\tilde{a}_{j} X_{j} \leq y\right] \\
& =\int_{-\infty}^{\infty} \operatorname{Pr}\left[\tilde{a}_{1} X_{1}+\cdots+\tilde{a}_{j-1} X_{j-1}+\tilde{a}_{j} X_{j} \leq y \mid X_{j}=s\right] f(s) \mathrm{d} s \\
& =\int_{-\infty}^{\infty} \operatorname{Pr}\left[\tilde{a}_{1} X_{1}+\cdots+\tilde{a}_{j-1} X_{j-1}+\tilde{a}_{j} s \leq y\right] f(s) \mathrm{d} s \\
& =\int_{-\infty}^{\infty} \operatorname{Pr}\left[\tilde{a}_{1} X_{1}+\cdots+\tilde{a}_{j-1} X_{j-1} \leq y-\tilde{a}_{j} s\right] f(s) \mathrm{d} s \\
& =\int_{-\infty}^{\infty} \Phi_{j-1}\left(y-\tilde{a}_{j} s\right) f(s) \mathrm{d} s \\
& =\int_{0}^{1} \Phi_{j-1}\left(y-\tilde{a}_{j} s\right) \mathrm{d} s \\
& =\Phi_{j}(y)
\end{aligned}
$$

0. Introduction
1. Randomized approximation of counting
2. Deterministic approximation of volume I
$>$ FPTAS for the volume of 0-1 knapsack polytope
i. Problem description
ii. Convolution for the exact volume
iii. Riemann sum for approximate convolution iv. Analysis
3. Deterministic approximation of volume II

Approximation of Φ by quadrature by parts with G

Definition
Let

$$
G_{0}(y):=\Phi_{0}(y)= \begin{cases}0, & x<0 \\ 1, & x \geq 0\end{cases}
$$

Recursively, let

$$
\bar{G}_{j}(y):=\int_{0}^{1} G_{j-1}\left(y-\tilde{a}_{j} s\right) \mathrm{d} s
$$

and let

$$
G_{j}(y):=\bar{G}_{j}(\lceil y\rceil)
$$

$$
\Phi_{0}(y)= \begin{cases}0, & x<0 \\ 1, & x \geq 0\end{cases}
$$

and recursively let

$$
\Phi_{j}(y):=\int_{0}^{1} \Phi_{j-1}\left(y-\widetilde{a}_{j} s\right) \mathrm{d} s
$$

Approximation of Φ by quadrature by parts with G

Recall

Calculation of approximate function G_{j}

For $z \in \mathbb{Z}_{>0}$,

$$
\begin{aligned}
G_{j}(z) & =\int_{0}^{1} G_{j-1}\left(z-s \tilde{a}_{j}\right) \mathrm{d} s \\
& =\frac{1}{\tilde{a}_{j}} G_{j-1}(z)+\frac{1}{\tilde{a}_{j}} G_{j-1}(z-1)+\frac{1}{\tilde{a}_{j}} G_{j-1}(z-2)+\cdots \\
& = \begin{cases}\sum_{l=0}^{|T|-1} \frac{1}{\tilde{a}_{j}} G_{j-1}(z-l)+\frac{\tilde{a}_{j}-\left\lfloor\tilde{a}_{j}\right\rfloor}{\tilde{a}_{j}} G_{j-1}\left(z-\left\lfloor\tilde{a}_{j} \mid\right)\right. & \left(\text { if } z-\tilde{a}_{j}>0\right) \\
\sum_{l=0}^{|T|-1} \frac{1}{\tilde{a}_{j}} G_{j-1}(z-l) & \text { (otherwise) }\end{cases}
\end{aligned}
$$

In principle,
$G_{j}(z)$ for each $z=0,1, \ldots, M$ is computed from $G_{j-1}\left(z^{\prime}\right)\left(z^{\prime}=0,1, \ldots, M\right)$ in $O(M)$ time (without using \int).

Algorithm

Algorithm
INPUT: $\widetilde{\boldsymbol{a}}=\left(\tilde{a}_{1}, \ldots, \tilde{a}_{n}\right) \in \mathbb{Q}_{>0}^{n}$.

1. Let $G_{0}(y):=0$ for $y \leq 0$ and let $G_{0}(y):=1$ for $y>0$.
2. For $j=1, \ldots, n$
3. For $z=1, \ldots, M$
4. Compute $G_{j}(z)$;
5. Output $G_{n}(M)$.

Lemma A
$\mathrm{O}\left(n M^{2}\right)$ time.

Lemma B
For any $\epsilon(0<\epsilon \leq 1)$, let $M \geq 2 n^{2} \epsilon^{-1}$, then

$$
\Phi_{n}(M) \leq G_{n}(M) \leq(1+\epsilon) \Phi_{n}(M) .
$$

0. Introduction
1. Randomized approximation of counting
2. Deterministic approximation of volume I
$>$ FPTAS for the volume of 0-1 knapsack polytope
i. Problem description
ii. Convolution for the exact volume
iii. Riemann sum for approximate convolution
iv. Analysis
3. Deterministic approximation of volume II

Lemma B
For any $\epsilon(0<\epsilon \leq 1)$, let $M \geq 2 n^{2} \epsilon^{-1}$, then

$$
\Phi_{n}(M) \leq G_{n}(M) \leq(1+\epsilon) \Phi_{n}(M) .
$$

Lemma 1 (Horizontal approximation)

$$
\Phi_{j}(y) \leq G_{j}(y) \leq \Phi_{j}(y+j)
$$

M steps function

Obs. 1
$\Phi_{j}(y), \bar{G}_{j}(y), G_{j}(y)$ are resp. monotone nondecreasing w.r.t. y
Obs. 2

$$
\bar{G}_{j}(y) \leq G_{j}(y) \leq \bar{G}_{j}(y+1)
$$

Obs. 3

$$
\begin{gathered}
\Phi_{j}(y) \leq \bar{G}_{j}(y) \\
\Phi_{j}(y)=\int_{0}^{1} \Phi_{j-1}\left(y-\tilde{a}_{j} s\right) \mathrm{d} s \\
\leq \int_{0}^{1} \bar{G}_{j-1}\left(y-\tilde{a}_{j} s\right) \\
\leq \int_{0}^{1} G_{j-1}\left(y-\tilde{a}_{j} s\right) \mathrm{d} s=\bar{G}_{j}(y)
\end{gathered}
$$

Obs. 2
Tec. 1: Horizontal Approximation
$\bar{G}_{j}(y) \leq G_{j}(y) \leq \bar{G}_{j}(y+1)$
Lemma 1
Obs. 3

$$
\Phi_{j}(y) \leq G_{j}(y) \leq \Phi_{j}(y+j)
$$

$$
\Phi_{j}(y) \leq \bar{G}_{j}(y)
$$

The former ineq. comes from Obs. 2,3.

Tec. 1: Horizontal Approximation

Lemma 1 Def.

$$
\Phi_{j}(y) \leq G_{j}(y) \leq \Phi_{j}(y+j) \quad \overline{G_{1}}(y):=\int_{0}^{1} \Phi_{0}\left(y-\tilde{a}_{j} s\right) \mathrm{d} s
$$

Proof (of the second ineq.)
For $j=0$, Obs. 2 and $\bar{G}_{0}(y)=\Phi_{0}(y)$ implies the claim.
Recursively

$$
\begin{aligned}
\bar{G}_{j}\left(y^{\prime}\right) & =\int_{0}^{1} G_{j-1}\left(y^{\prime}-\tilde{a}_{j} s\right) d s \\
& \leq \int_{0}^{1} \Phi_{j-1}\left(y^{\prime}-\tilde{a}_{j} s+j-1\right) d s \\
& =\Phi_{j}\left(y^{\prime}+(j-1)\right)
\end{aligned}
$$

From Obs. 2,

$$
G_{j}(y) \leq \bar{G}_{j}(y+1) \leq \Phi_{j}(y+j)
$$

Analysis of approx. ratio
Lemma B
For any $\epsilon(0<\epsilon \leq 1)$, let $M \geq 2 n^{2} \epsilon^{-1}$, then

$$
\Phi_{n}(M) \leq G_{n}(M) \leq(1+\epsilon) \Phi_{n}(M)
$$

Lemma 1 (Horizontal approximation)

$$
\Phi_{j}(y) \leq G_{j}(y) \leq \Phi_{j}(y+j)
$$

$$
\Phi_{n}(M) \leq G_{n}(M) \leq(1+\epsilon) \Phi_{n}(M)
$$

Analysis of approx. ratio
For any $\epsilon(0<\epsilon \leq 1)$, let $M \geq 2 n^{2} \epsilon^{-1}$, then

$$
\Phi_{n}(M) \leq G_{n}(M) \leq(1+\epsilon) \Phi_{n}(M)
$$

Lemma 1 (Horizontal approximation)

$$
\Phi_{j}(y) \leq G_{j}(y) \leq \Phi_{j}(y+j)
$$

Lemma 2 (cone bound)

$$
\begin{aligned}
& \frac{\Phi_{n}(M)}{\Phi_{n}(M+n)} \geq\left(\frac{M}{M+n}\right)^{n}=\left(\frac{1}{1+\frac{n}{M}}\right)^{n} \\
& \geq\left(1-\frac{n}{M}\right)^{n} \\
& \left.\geq\left(1-\frac{\epsilon}{2 n}\right)^{n}\right) M \geq 2 n^{2} \epsilon^{-1} \\
& \geq 1-n \frac{\epsilon}{2 n}=1-\frac{\epsilon}{2} \geq \frac{1}{1+\epsilon}
\end{aligned}
$$

$$
\Phi_{n}(M) \leq G_{n}(M) \leq \Phi_{n}(M+n) \leq(1+\epsilon) \Phi_{n}(M)
$$

Tec. 2: Cone bound (for vertical approx. ratio)

Lemma 2

$$
\frac{\Phi_{n}(M)}{\Phi_{n}(M+n)} \geq\left(\frac{M}{M+n}\right)^{n}
$$

0-1 knapsack polytope

Input: positive integers a_{1}, \ldots, a_{n}, b
Output: the volume of 0-1 knapsack polytope K

$$
K=\left\{\boldsymbol{x} \in[0,1]^{n} \mid a_{1} x_{1}+\cdots+a_{n} x_{n} \leq b\right\}
$$

Compute $\operatorname{Vol}(\mathrm{K})$ is \#P-hard
Dyer and Frieze [1988]
Thm. [Ando \& Kijima 16]
For any $\epsilon(0<\epsilon<1)$, there exists an algorithm which outputs Z satisfying

$$
(1-\epsilon) \operatorname{Vol}(K) \leq Z \leq(1+\epsilon) \operatorname{Vol}(K)
$$

in $0\left(\frac{n^{3}}{\epsilon}\right)$ time.

Discussion for Section 2

Extension

The algorithm is extend to ones with m constraints (so called " m-D knapsack").

INPUT: m vectors $\boldsymbol{a}_{\boldsymbol{1}}^{\top}, \ldots, \boldsymbol{a}_{\boldsymbol{m}}^{\top} \in \mathbb{Z}_{\geq 0}^{n}$ and a vector $\boldsymbol{b} \in \mathbb{Z}_{\geq 0}^{m}$
OUTPUT: $\operatorname{Vol}(K)$ for $K=\left\{\boldsymbol{x} \in[0,1]^{n} \mid A \boldsymbol{x} \leq \boldsymbol{b}\right\}$

$$
\text { where } A=\left(\begin{array}{c}
\boldsymbol{a}_{\mathbf{1}}^{\top} \\
\vdots \\
\boldsymbol{a}_{\boldsymbol{m}}^{\top}
\end{array}\right) \text {. }
$$

$$
n=2
$$

It runs in $\mathrm{O}\left(\left(\frac{n^{2}}{\epsilon}\right)^{m+1} n m \log m\right)$ time
Future work

$$
\begin{aligned}
& \mathrm{O}\left(n^{7} \epsilon^{-3}\right) \text { when } m=2 \\
& \mathrm{O}\left(n^{9} \epsilon^{-4}\right) \text { when } m=3 \\
& \mathrm{O}\left(n^{11} \epsilon^{-5}\right) \text { when } m=4
\end{aligned}
$$

Is FPTAS for more general polytope

0. Introduction

1. Randomized approximation of counting
2. Deterministic approximation of volume I
3. Deterministic approximation of volume II
$>$ FPTAS for the Volume of some \mathcal{V}-polytope
i. Problem description
ii. Idea: Reduction to $\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(c, r))$
iii. Core: FPTAS for $\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\boldsymbol{c}, r))$ iv. \#P-hardness of $\operatorname{Vol}(C(0,1) \cap C(c, r))$

3. Deterministic Approximation of the volume of some \mathcal{V}-polytope

Ei Ando (Sojo Univ), Shuji Kijima (Kyushu Univ.)

> Ei Ando and Shuji Kijima, An FPTAS for the volume computation of 0-1 knapsack polytopes based on approximate convolution, Algorithmica, 76:4 (2016), 1245--1263.

Ei Ando, Shuji Kijima, An FPTAS for the volume of a V-polytope - it is hard to compute the volume of the intersection of two cross-polytopes, arXiv:1607.06173, 2016.

0. Introduction

1. Randomized approximation of counting
2. Deterministic approximation of volume I
3. Deterministic approximation of volume II
$>$ FPTAS for the Volume of some \mathcal{V}-polytope
i. Problem description
ii. Idea: Reduction to $\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\boldsymbol{c}, r))$
iii. Core: FPTAS for $\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\boldsymbol{c}, r))$ iv. \#P-hardness of $\operatorname{Vol}(C(0,1) \cap C(c, r))$

H-polytope V-polytope
An \mathcal{H}-polytope is an intersection of finitely many closed half-space in \mathbb{R}^{n}.

A \mathcal{V}-polytope is a convex hull of a finite point set in \mathbb{R}^{n}.

In 2-D, the difference may seem vague.
Consider n-D hypercube: $2 n$ facets and 2^{n} vertices.
Consider n-D cross-polytope (L_{1}-ball): 2^{n} facets and $2 n$ vertices.

Approximating the volume is hard.

[Elekes 1986] (cf. [Lovász 1986])

As given a convex body by a membership oracle,
no polynomial time deterministic algorithm approximates
its volume within the ratio 1.999^{n}.
$>$ If the convex body is a polytope, then there may be a much better way ... [Lovász 1986]
Dyer and Frieze [1988]
Computing the volume of a $0-1$ knapsack polytope is \#P-hard. Khachiyan [1989]
Computing the volume of a "polar" knapsack polytope is \#P-hard, motivated by the complexity of the volume a \mathcal{V}-polytope.

Knapsack "dual" polytope

Input: Positive integers $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$
Output: Volume of the knapsack "dual" polytope P_{a} given by

$$
\begin{aligned}
P_{\boldsymbol{a}} & \stackrel{\text { def }}{=} \operatorname{conv}\left\{ \pm \boldsymbol{e}_{1}, \pm \boldsymbol{e}_{2}, \ldots, \pm \boldsymbol{e}_{n}, \boldsymbol{a}\right\} \\
& =\operatorname{conv}\{C(\mathbf{0}, 1), \boldsymbol{a}\}
\end{aligned}
$$

where $\boldsymbol{e}_{\boldsymbol{i}}$ denotes the i-th unit vector.

For convenience, let

$$
\begin{aligned}
& C(\boldsymbol{c}, r) \stackrel{\text { def }}{=} \operatorname{conv}\left\{\boldsymbol{c} \pm r \boldsymbol{e}_{\boldsymbol{i}} \mid i=1, \ldots n\right\} \\
&=\left\{\boldsymbol{c} \in \mathbb{R}^{n} \mid\|\boldsymbol{x}-\boldsymbol{c}\|_{1} \leq r\right\} \\
& \text { for } \boldsymbol{c} \in \mathbb{R}^{n} \text { and } r \in \mathbb{R}_{\geq 0} .
\end{aligned}
$$

\#P-hard [Khachiyan 1989]

Knapsack "dual" polytope

Input: Positive integers $\boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$
Output: Volume of the knapsack "dual" polytope P_{a} given by

$$
\begin{aligned}
& P_{\boldsymbol{a}} \stackrel{\text { def }}{=} \operatorname{conv}\left\{ \pm \boldsymbol{e}_{1}, \pm \boldsymbol{e}_{2}, \ldots, \pm \boldsymbol{e}_{n}, \boldsymbol{a}\right\} \\
& \\
& \quad=\operatorname{conv}\{C(\mathbf{0}, 1), \boldsymbol{a}\}
\end{aligned}
$$

where $\boldsymbol{e}_{\boldsymbol{i}}$ denotes the i-th unit vector.

For convenience, let

$$
\begin{aligned}
C(\boldsymbol{c}, r) & \stackrel{\text { def }}{=} \operatorname{conv}\left\{\boldsymbol{c} \pm r \boldsymbol{e}_{\boldsymbol{i}} \mid i=1, \ldots n\right\} \\
& =\left\{\boldsymbol{c} \in \mathbb{R}^{n} \backslash\|\boldsymbol{x}-\boldsymbol{c}\|_{1} \leq r\right\}
\end{aligned}
$$

Thm. [Ando \& Kijima 16]
For any $\epsilon(0<\epsilon<1)$, there exists an algorithm which outputs Z satisfying

$$
(1-\epsilon) \operatorname{Vol}\left(P_{\boldsymbol{a}}\right) \leq Z \leq(1+\epsilon) \operatorname{Vol}\left(P_{\boldsymbol{a}}\right)
$$

in $0\left(\frac{n^{10}}{\epsilon^{6}}\right)$ time.

0. Introduction

1. Randomized approximation of counting
2. Deterministic approximation of volume I
3. Deterministic approximation of volume II
$>$ FPTAS for the Volume of some \mathcal{v}-polytope
i. Problem description
ii. Idea: Reduction to $\operatorname{Vol}(C(0,1) \cap C(c, r))$
iii. FPTAS for $\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\boldsymbol{c}, r))$
iv. \#P-hardness of $\operatorname{Vol}(C(0,1) \cap C(c, r))$

Idea
Approximate $P_{\boldsymbol{a}}$ by the union of a geometric series of $P_{\boldsymbol{a}}=\operatorname{conv}\{C(\mathbf{0}, 1), \boldsymbol{a}\}$
Let $Q_{k} \xlongequal{\text { def }} C\left(\left(1-\beta^{k}\right) \boldsymbol{a}, \beta^{k}\right)$ for some $\beta(0<\beta<1)$

$$
\begin{aligned}
& \text { i.e. } \\
& Q_{0}=C(\mathbf{0}, 1) \\
& Q_{1}=C((\mathbf{1}-\beta) \boldsymbol{a}, \beta) \\
& Q_{\infty}=C(\boldsymbol{a}, 0)
\end{aligned}
$$

$$
\operatorname{Vol}\left(P_{a}\right) \simeq \operatorname{Vol}\left(\bigcup_{k=0}^{\infty} Q_{k}\right)
$$

Union of geometric series of cross-polytopes
Lemma 1
If $1-\beta \leq \frac{c_{1} \epsilon}{n\|a\|_{1}}$ where $0<c_{1} \epsilon<1$, then
$\left(1-c_{1} \epsilon\right) \cdot \operatorname{Vol}\left(P_{a}\right) \leq \operatorname{Vol}\left(\bigcup_{k=0}^{\infty} Q_{k}\right) \leq \operatorname{Vol}\left(P_{a}\right)$ Crosspolytopes converging to \boldsymbol{a}.

Let $Q_{k} \stackrel{\text { def }}{=} C\left(\left(1-\beta^{k}\right) \boldsymbol{a}, \beta^{k}\right)$ for some $\beta(0<\beta<1)$

Approximate $P_{\boldsymbol{a}}$ by the union of a geometric series of Crosspolytopes converging to \boldsymbol{a}.

Let $Q_{k} \xlongequal{\text { def }} C\left(\left(1-\beta^{k}\right) \boldsymbol{a}, \beta^{k}\right)$ for some $\beta(0<\beta<1)$

Approximate $P_{\boldsymbol{a}}$ by the union of a geometric series of Crosspolytopes converging to \boldsymbol{a}.

Let $Q_{k} \stackrel{\text { def }}{=} C\left(\left(1-\beta^{k}\right) \boldsymbol{a}, \beta^{k}\right)$ for some $\beta(0<\beta<1)$

$$
\begin{aligned}
& \text { i.e. } \\
& Q_{0}=C(\mathbf{0}, 1) \\
& Q_{1}=C((\mathbf{1}-\beta) \boldsymbol{a}, \beta) \\
& \quad \vdots \\
& Q_{\infty}
\end{aligned}=C(\boldsymbol{a}, 0) \quad .
$$

$$
\operatorname{Vol}\left(P_{\boldsymbol{a}}\right) \simeq \operatorname{Vol}\left(\bigcup_{k=0}^{\infty} Q_{k}\right)
$$

$Q_{0} \backslash Q_{1}$ is not convex \Rightarrow intractable
$\left.\int_{k=0}^{\infty}\left(Q_{k} \backslash Q_{k+1}\right)\right)$
$\operatorname{Vol}\left(Q_{0} \backslash Q_{1}\right)=\operatorname{Vol}\left(Q_{0}\right)-\operatorname{Vol}\left(Q_{0} \cap Q_{1}\right) \quad \operatorname{Vol}\left(Q_{k} \backslash Q_{k+1}\right)$
$=\frac{2^{n}}{n!}-\operatorname{Vol}\left(Q_{0} \cap Q_{1}\right)$
$Q_{0} \cap Q_{1}$ is convex \Rightarrow tractable

$$
\beta^{k} \operatorname{Vol}\left(Q_{0} \backslash Q_{1}\right)=\frac{\operatorname{Vol}\left(Q_{0} \backslash Q_{1}\right)}{1-\beta^{n}}
$$

Requirements to β are conflict, but is possible to be settled
Lemma 1
If $1-\beta \leq \frac{c_{1} \epsilon}{n\|\boldsymbol{a}\|_{1}}$ where $0<c_{1} \epsilon<1$, then

$$
\left(1-c_{1} \epsilon\right) \cdot \operatorname{Vol}\left(P_{\boldsymbol{a}}\right) \leq \operatorname{Vol}\left(\bigcup_{k=0}^{\infty} Q_{k}\right) \leq \operatorname{Vol}\left(P_{\boldsymbol{a}}\right)
$$

Proposition

$$
\operatorname{Vol}\left(\bigcup_{k=0}^{\infty} Q_{k}\right)=\frac{1}{1-\beta^{n}}\left(\frac{2^{n}}{n!}-\operatorname{Vol}\left(Q_{0} \cap Q_{1}\right)\right)
$$

Approximate P_{a} by the union of a geometric series of

"-" is a dangerous operation in approximation:
For example,
suppose you know $x \simeq 49$ with approximate ratio 1%.
Clearly, $50+x \simeq 99$ with approximate ratio 1%.
We hope $50-x \simeq 1$, however it may be $0.5,0.1$, or 0.0001 etc.

$$
\operatorname{Vol}(P, p) \simeq \operatorname{Vol}\left(\bigcup_{k=0}^{\infty} Q_{k}\right)
$$

$Q_{0} \backslash Q_{1}$ is not convex \Rightarrow int actable

$$
\operatorname{Vol}\left(Q_{0} \backslash Q_{1}\right)=\operatorname{Vol}(Q \beta)-\operatorname{Vol}\left(Q_{0} \cap Q_{1}\right) \quad \operatorname{Vol}\left(Q_{k} \backslash Q_{k+1}\right)
$$

$$
=\frac{2^{n}}{n!} \Theta \operatorname{Vol}\left(Q_{0} \cap Q_{1}\right)
$$

$Q_{0} \cap Q_{1}$ is convex \Rightarrow tractable

Approximate $P_{\boldsymbol{a}}$ by the union of a geometric series of Crosspolytopes converging to \boldsymbol{a}.

Let $Q_{k} \stackrel{\text { def }}{=} C\left(\left(1-\beta^{k}\right) \boldsymbol{a}, \beta^{k}\right)$ for some $\beta(0<\beta<1)$

$$
\begin{aligned}
& \text { i.e. } \\
& Q_{0}=C(\mathbf{0}, 1) \\
& Q_{1}=C((\mathbf{1}-\beta) \boldsymbol{a}, \beta)
\end{aligned}
$$

$Q_{0} \backslash Q_{1}$ is not convex $\Rightarrow \mathrm{i}$
We show that if $1-\beta$ is sufficiently large, i.e., $Q_{0} \backslash Q_{1}$ is sufficiently large, then

$$
\begin{aligned}
\operatorname{Vol}\left(Q_{0} \backslash Q_{1}\right) & =\operatorname{Vol}\left(Q_{0}\right) \\
& =\frac{2^{n}}{n!}-\operatorname{Vol}
\end{aligned}
$$

$$
\operatorname{Vol}\left(Q_{0} \backslash Q_{1}\right) \simeq \frac{2^{n}}{n!}-\operatorname{Vol}\left(Q_{0} \cap Q_{1}\right)
$$

holds in the sense of approximation
$Q_{0} \cap Q_{1}$ is convex \Rightarrow tractabr

Requirements to β are conflict, but is possible to be settled

Lemma 1

If $1-\beta \leq \frac{c_{1} \epsilon}{n\|a\|_{1}}$ where $0<c_{1} \epsilon<1$, then

$$
\left(1-c_{1} \epsilon\right) \cdot \operatorname{Vol}\left(P_{\boldsymbol{a}}\right) \leq \operatorname{Vol}\left(\bigcup_{k=0}^{\infty} Q_{k}\right) \leq \operatorname{Vol}\left(P_{\boldsymbol{a}}\right)
$$

Proposition

$$
\operatorname{Vol}\left(\bigcup_{k=0}^{\infty} Q_{k}\right)=\frac{1}{1-\beta^{n}}\left(\frac{2^{n}}{n!}-\operatorname{Vol}\left(Q_{0} \cap Q_{1}\right)\right)
$$

Lemma 2

Suppose $1-\beta \geq \frac{c_{2} \epsilon}{n\|a\|_{1}}$ where $0<c_{2} \epsilon<1$.
If we have Z approximating $\operatorname{Vol}\left(Q_{0} \cap Q_{1}\right)$ such that

$$
\operatorname{Vol}\left(Q_{0} \cap Q_{1}\right) \leq Z \leq\left(1+\mathrm{c}_{2} \epsilon\right) \operatorname{Vol}\left(Q_{0} \cap Q_{1}\right)
$$

then $\frac{2^{n}}{n!}-Z$ satisfies

$$
(1-\epsilon) \cdot\left(\frac{2^{n}}{n!}-\operatorname{Vol}\left(Q_{0} \cap Q_{1}\right)\right) \leq\left(\frac{2^{n}}{n!}-Z\right) \leq\left(\frac{2^{n}}{n!}-\operatorname{Vol}\left(Q_{0} \cap Q_{1}\right)\right)
$$

0. Introduction
1. Randomized approximation of counting
2. Deterministic approximation of volume I
3. Deterministic approximation of volume II
$>$ FPTAS for the Volume of some \mathcal{v}-polytope
i. Problem description
ii. Idea: Reduction to $\operatorname{Vol}(C(0,1) \cap C(c, r))$
iii. FPTAS for $\operatorname{Vol}(C(0,1) \cap C(c, r))$
iv. \#P-hardness of $\operatorname{Vol}(C(0,1) \cap C(c, r))$

The volume of an intersection of two cross-polytopes

Input: $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Q}_{\geq 0}^{n}$ and $r(0<r \leq 1)$ such that $\|\boldsymbol{c}\|_{1} \leq r$.
Output: approximation of $\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\boldsymbol{c}, r))$

Recall

$$
\begin{aligned}
C(\boldsymbol{c}, r) & \stackrel{\text { def }}{=} \operatorname{conv}\left\{\boldsymbol{c} \pm r \boldsymbol{e}_{i} \mid i=1, \ldots n\right\} \\
& =\left\{\boldsymbol{c} \in \mathbb{R}^{n} \mid\|\boldsymbol{x}-\boldsymbol{c}\|_{1} \leq r\right\}
\end{aligned}
$$

Lemma [Ando \& Kijima 16+]
Suppose $\|\boldsymbol{c}\|_{1} \leq r$. For any $\delta(0<\delta<1)$, let $M:=\left\lceil 4 n^{2} \delta^{-1}\right\rceil$ then $G_{n}(1, r)$ satisfies
$\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\boldsymbol{c}, r)) \leq G_{n}(1, r) \leq(1+\delta) \cdot \operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\boldsymbol{c}, r))$. $G_{n}(1, r)$ is calculated in $\mathrm{O}\left(n^{7} \delta^{-3}\right)$ time.

Algorithm is based on an approximate convolution

Convolution to compute $\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\boldsymbol{c}, r))$

Def.

Let

$$
\Psi_{0}=\left\{\begin{array}{cc}
1 & \text { if } u \geq 0 \text { and } v \geq 0 \\
0 & \text { otherwise }
\end{array}\right.
$$

and recursively (w.r.t. i), let

$$
\Psi_{i}(u, v) \stackrel{\operatorname{def}}{=} \int_{-1}^{1} \Psi_{i-1}\left(u-|s|, v-\left|s-c_{i}\right|\right) \mathrm{d} s
$$

Prop.

$$
\Psi_{n}(1, r)=\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\boldsymbol{c}, r))
$$

Proof sketch.

$$
\frac{1}{2^{i}} \Psi_{i}(u, v)=\operatorname{Pr}\left[\left(\sum_{j=1}^{i}\left|X_{j}\right| \leq u\right) \wedge\left(\sum_{j=1}^{i}\left|X_{j}-c_{j}\right| \leq v\right)\right]
$$

Def.
Let

$$
G_{0} \stackrel{\text { def }}{=}\left\{\begin{array}{lc}
1 & \text { if } u \geq 0 \text { and } v \geq 0, \\
0 & \text { otherwise. }
\end{array}\right.
$$

Recursively, let

$$
\overline{G_{i}}(u, v) \stackrel{\text { def }}{=} \int_{-1}^{1} G_{i-1}\left(u-|s|, v-\left|s-c_{i}\right|\right) \mathrm{d} s
$$

and let

$$
G_{i}(u, v) \stackrel{\text { def }}{=} \overline{G_{i}}\left(\frac{1}{M}\lceil M u\rceil, \frac{r}{M}\left\lceil\frac{M}{r} v\right\rceil\right)
$$

Notice that $G_{i}(u, v)$ is a step function, which implies
that \int appearing in the def. of $\overline{G_{i}}(u, v)$ is replaced by \sum.
G_{i} is calculated efficiently (omit the detail)
Let

$$
\begin{aligned}
\overline{G_{i}}(u, v) & =\int_{-1}^{1} G_{i-1}\left(u-|s|, v-\left|s-c_{i}\right|\right) \mathrm{d} s \\
& =\cdots . . \\
& =\sum_{j=0}^{m-1}\left(t_{j+1}-t_{j}\right) \cdot G_{i-1}\left(\frac{1}{M}\left[M\left(u-\left|t_{j+1}\right|\right)\right], \frac{r}{M}\left|\frac{M}{r}\left(v-\left|t_{j+1}-c_{i}\right|\right)\right|\right)
\end{aligned}
$$

where $t_{0}, t_{1}, \ldots, t_{m}(m=O(M))$ are event points.

The volume of an intersection of two cross-polytopes

Input: $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Q}_{\geq 0}^{n}$ and $r(0<r \leq 1)$ such that $\|\boldsymbol{c}\|_{1} \leq r$.
Output: approximation of $\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\boldsymbol{c}, r))$

Recall

$$
\begin{aligned}
C(\boldsymbol{c}, r) & \stackrel{\text { def }}{=} \operatorname{conv}\left\{\boldsymbol{c} \pm r \boldsymbol{e}_{\boldsymbol{i}} \mid i=1, \ldots n\right\} \\
& =\left\{\boldsymbol{c} \in \mathbb{R}^{n} \mid\|\boldsymbol{x}-\boldsymbol{c}\|_{1} \leq r\right\}
\end{aligned}
$$

Lemma [Ando \& Kijima 16+]

Suppose $\|c\|_{1} \leq r$. For any $\delta(0<\delta<1)$, let $M:=\left\lceil 4 n^{2} \delta^{-1}\right\rceil$ then $G_{n}(1, r)$ satisfies
$\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\boldsymbol{c}, r)) \leq G_{n}(1, r) \leq(1+\delta) \cdot \operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\boldsymbol{c}, r))$. $G_{n}(1, r)$ is calculated in $O\left(n^{7} \delta^{-3}\right)$ time.

Analysis of approximation ratio uses the techniques
\checkmark "horizontal approximation" and
\checkmark "cone bound"
in a similar way as $0-1$ knapsack
0. Introduction

1. Randomized approximation of counting
2. Deterministic approximation of volume I
3. Deterministic approximation of volume II
$>$ FPTAS for the Volume of some \mathcal{V}-polytope
i. Problem description
ii. Idea: Reduction to $\operatorname{Vol}(C(0,1) \cap C(c, r))$
iii. FPTAS for $\operatorname{Vol}(C(0,1) \cap C(c, r))$
iv. \#P-hardness of $\operatorname{Vol}(C(0,1) \cap C(c, r))$

Volume of an intersection of two L_{1} balls is \#P-hard
Thm.
Let $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$ and $r_{1}, r_{2} \in \mathbb{Z}$,
such that $\|\boldsymbol{c}\|_{1} \leq \min \left(r_{1}, r_{2}\right)$, i.e., $\boldsymbol{c} \in C\left(\mathbf{0}, r_{1}\right)$ and $\mathbf{0} \in C\left(\boldsymbol{c}, r_{2}\right)$ Then computing $\operatorname{Vol}\left(C\left(\mathbf{0}, r_{1}\right) \cap C\left(\boldsymbol{c}, r_{2}\right)\right)$ is $\# \mathrm{P}$-hard.

Proof sketch

Reduce (a version of) counting subset sum.
Intuitively, as given $a \in \mathbb{Z}_{>0}^{n}$, we show that

$$
\begin{aligned}
& \operatorname{Vol}(C(\mathbf{0}, 1+\epsilon) \cap C(\delta \boldsymbol{a}, 1))-\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\delta \boldsymbol{a}, 1)) \\
& \left.\simeq \frac{\epsilon}{n!}\left|\boldsymbol{\sigma} \in\{-1,1\}^{n}\right| \sum_{i=1}^{n} \sigma_{i} a_{i}>0 \right\rvert\,
\end{aligned}
$$

when $0<\epsilon<\delta \ll \frac{1}{\|a\|_{1}}$.

Volume of an intersection of two L_{1} balls is \#P-hard

Claim

$\left.\operatorname{Vol}(C(\mathbf{0}, 1+\epsilon) \cap C(\delta \boldsymbol{a}, 1))-\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\delta \boldsymbol{a}, 1)) \simeq \frac{\epsilon}{n!}\left|\boldsymbol{\sigma} \in\{-1,1\}^{n}\right| \sum_{i=1}^{n} \sigma_{i} a_{i}>0 \right\rvert\,$

Fig. When an instance does not have a subset-sum solution

Volume of an intersection of two L_{1} balls is \#P-hard

Claim

$$
\left.\overline{\operatorname{Vol}(}(C(\mathbf{0}, 1+\epsilon) \cap C(\delta \boldsymbol{a}, 1))-\operatorname{Vol}(C(\mathbf{0}, 1) \cap C(\delta \boldsymbol{a}, 1)) \simeq \frac{\epsilon}{n!}\left|\boldsymbol{\sigma} \in\{-1,1\}^{n}\right| \sum_{i=1}^{n} \sigma_{i} a_{i}>0 \right\rvert\,
$$

Fig. When an instance has a subset-sum solution

Open problems

V-polytope

\square When is computing the n-D volume of a \mathcal{V}-polytope hard?
\checkmark It is \#P-hard for at most $2 n+1$ vertices [Khachiyan]
\checkmark It is poly (n) time (using some $\sqrt{ } \mathrm{s}$) for $n+$ const. vertices.
> e.g., $n+1$ vertices implies simplex, which is easily computed.
\square Is there an FPTAS for any V-polytope?

- What is known about the volume for "duality" of polytopes
\square How many vertices of intersection of two cross-polytopes?
Deterministic approximation for \#P-hard problems
- \#linear extensions?

Concluding Remarks

Talk sketch

0. Introduction
1. Randomized approximation of counting
2. Deterministic approximation of volume I
3. Deterministic approximation of volume II

Randomness is necessary for some computation.
But when?

The end

Thank you for the attention.

